A Trusted Platform Module-based, Pre-emptive and
Dynamic Asset Discovery Tool

Antonio Jesus Diaz-Honrubia!, Alberto Bldzquez Herranz', Lucia Prieto
Santamarfal, Ernestina Menasalvas Ruiz!, Alejandro Rodriguez-Gonzalez!,
Gustavo Gonzalez-Granadillo?, Rodrigo Diaz?, Emmanouil Panaousis®, and

Christos Xenakis*

L Centro de Tecnologia Biomédica, E.T.S. de Ingenieros Informdticos, Universidad
Politécnica de Madrid, Madrid, Spain, e-mail:
{antoniojesus.diaz,alberto.bherranz,lucia.prieto. santamaria,
ernestina.menasalvas, alejandro.rg} @upm.es
2 Atos Research & Innovation, Cybersecurity Laboratory, Barcelona, Spain, e-mail:
{gustavo.gonzalez, rodrigo.diaz} @atos.net
3 University of Greenwich, London, United Kingdom, e-mail:
E.Panaousis@Qgreenwich.ac.uk
4 University of Piraeus, Piraeus, Greece, e-mail: zenakis@unipi.gr

Abstract

This paper presents an original Intelligent and Secure Asset Discovery Tool
(ISADT) that uses artificial intelligence and TPM-based technologies to: 1)
detect the network assets, and ii) detect suspicious pattern in the use of
the network. The architecture has specifically been designed to discover the
assets of medium and large size companies and institutions, such as hospitals,
universities, or government buildings. Given the distributed design of the
architecture, it can cope with the problem of the isolation of different Virtual
Local Area Networks (VLANSs). This is done by collecting information from
all the VLANSs and storing it in a central node, which can be accessed by
the network administrator, who may consult and visualize the status in any
moment, or even by other authorized applications. The collected data is kept
in a secure warehouse by the use of a Trusted Platform Module. Moreover,
collected data is processed by the use of artificial intelligence in two ways:
i) the traffic of each network is analysed so that suspicious patterns can be
detected, and ii) identified ports and status are analysed to detect anomalous
combinations of open ports in a device.

October 25, 2022

Keywords: Asset discovery, Cyber security, Network visualization,
Artificial intelligence, Trusted Platform Module

1. Introduction

A crucial aspect to take into account when managing the cyber security
of an organisation is to have an accurate image of its assets (e.g. network
devices, desktops, laptops). These are the most prominent targets of any
cyber attack, which attempts to exploit asset vulnerabilities. Therefore, or-
ganisations must be able to patch these vulnerabilities after they thoroughly
discover their assets.

This paper presents the Intelligent and Secure Asset Discovery Tool (ISADT),
which has been developed for discovering information about the devices that
are connected to the computer network of the institution, including their IP
and MAC addresses, open ports, services in use, and suspicious patterns in
the traffic of a port or in the combination of used ports. This information
may include the operating system of the devices, their open ports, or services
running on them, like database management systems, and web servers. The
tool is able to detect changes in the characteristics (e.g., IP addresses, open
ports) previously detected devices and promptly discover new devices that
are connected to the network.

Having a clear picture of the assets in the organization’s network has
a crucial importance to detect unauthorized connections, anomalous be-
haviours of devices and services, or the presence of malware. Therefore, a
tool like ISADT can protect the network of any organization where the size
of that network makes that it impossible to have all the connected devices
under control.

Considering this, one of the key functionalities of the proposed tool is that
it copes with the challenge of having isolated Virtual Local Area Networks
(VLANS) within the same organisation. This is achieved through a fully-
distributed architecture over which ISADT is built, since it will help to have
an agent inspecting each network segment. In this way, a software agent
that is running in each isolated network will be in charge of discovering all
the assets associated with that network, and send all the information to a
central node. Then, all the information in this central node can be queried
by other applications or by the network administrator to detect unexpected
connections or traffic.

The work presented in [1] has demonstrated that a Trusted Platform
Module (TPM) [2] can be used to guarantee the integrity of source code
and the compiled binaries when using a continuous integration approach.
This approach can be used in other contexts to secure the information being
stored in different platforms, and not only in a software repository. Given
the sensitive nature of the information that this central node will gather, a
TPM is used to check whether its hardware and software have been altered.
This capability guarantees that the central node cannot receive or share
information when the system is compromised.

Finally, the real-time detection of adversarial or inappropriate behaviours
in the network is an essential part of cyber risk assessment. One of the main
novelties of ISADT is the identification of suspicious behaviours within the
VLAN environments, which is achieved through the use of two algorithms
based on Artificial Intelligence (AI) techniques. The implementation of these
algorithms enables the ISADT capability to detect that: (i) among a set of
ports that are usually used together, a port is missing; and (ii) an unusual
peak of traffic in a given port is occurring.

Considering this, the tool introduces the following novelties with respect
to the state of the art on asset discovery and the processing of the discovered
information:

e [t handles the problem of network isolation in medium and large size
networks.

e [t uses the TPM technology to enhance the security of the collected
information.

e [t uses Al-based algorithms to detect suspicious patterns in the usage
of ports.

e [t analyses the time series, produced by the traffic in each port, to
detect traffic peaks and warn the network administrator in the case
that an anomalous peak is detected.

The results about the information collected by the tool and the character-
istics that it owns are compared with the most extended tool for the detection
of open ports, Nmap [3]. These results show that the proposed ISADT has
more capabilities than Nmap and it can scan larger networks faster than it.

The remaining of this paper is structured as follows. Section 2 presents
the related works concerning asset discovering, Section 3 describes the pro-
posed distributed architecture of this tool, Section 4 demonstrates the func-
tionalities of the tool, Section 5 presents a discussion about the architecture
considering its functionality and Section 6 concludes this paper.

2. Related Work

Nowadays, there is an increasing trend in cyber-attacks. For instance, as
it is presented in [4], cyber-criminals acquire, launder, and reinvest about
$1.5 trillion annually. Moreover, the European Confederation of Institute of
Internal Auditing’s (ECITA) states that cyber security has been the top risk
faced by business in the last years [5]. A lot of research has been done to
prevent these cyber-attacks and, some of the efforts aim at monitoring the
network [6] [7] and keep a perfect knowledge about the devices and systems
that are connected to it, as well as their characteristics so that if a new vul-
nerability is discovered, in any of them, the organization may take immediate
decisions preventing cyber incidents, through exploitation of vulnerabilities,
at their root.

Fingerprinting is the process of collecting information about the network
devices, their characteristics and their associated services [8]. Fingerprinting
can be classified into active and passive. In passive methods, network traffic
is monitored without actively engaging with the host and without generating
any traffic. On the other hand, in active methods, packets are sent to hosts
and their responses are analysed.

In the field of active fingerprinting, Barroux J. C. in [9] presents a method
that makes use of the information, about the devices in the network, that
is gathered by Simple Network Management Protocol (SNMP) packets. The
author describes that an integrated resource installs an agent in a selected
node from each network. This agent sends the collected information back to
the integrated resource which collects and stores it.

The installation of the agent is transparent to users, since it is done by
means of remote procedure calls from the integrated resource to the selected
node on each network. However, this approach has some drawbacks: the
remote installation of software in other devices might represent an intrusion
and a possible risk in the target devices. Moreover, the approach does not
take into account the problem of network isolation, by which most of VLANs
cannot be reached from others. Finally, the proposed system, even though it

can discover part of the software installed in the network, cannot discover all
the open ports nor their associated services.

Another approach, not based on SNMP packets, but on the use of Address
Resolution Protocol (ARP) spoofing techniques, is presented in [10]. This
is based on the idea of forcing all traffic in a network to pass through a
central host designated for that purpose, allowing it to detect all devices
connected to the network. Although this approach does not need to perform
an unauthorised installation of an agent on a remote device, it cannot solve
the aforementioned problems of port scanning and network isolation (and
what is more, it does not work in a scenario with multiple private networks).

A very powerful tool for active scanning of a network is Nmap [3], which
is able to scan open ports and, even, infer the service (with its version) that
might be running in the ports. The main disadvantages of Nmap is that it
cannot be used for scanning networks with private IP addresses and that it
is a non-concurrent tool.

Despite these disadvantages, Nmap has been widely used for network
inspection. For instance, it is used in [10] for scanning the devices, their op-
erating systems, and their open ports the network of a university in India.
Later, the authors assess the threats and vulnerabilities and create a reme-
diation plan based on those assessments. Similar works can be found in the
literature [11] [12].

A tool similar to Nmap, but making use of the powerful concurrent ca-
pabilities of the Golang programming language is presented in [13]. While
this tool, given its concurrent nature, is faster than the original Nmap, it
still have the limitation of not being able to scan networks with private IP
addresses.

Regarding passive methods, packet sniffing is the most widespread tech-
nique to be used. Packet sniffing intercepts all traffic that goes through a
network. The intercepted packets can be decoded, and their data might be
obtained. Even though packet sniffing is usually associated with malicious
activities to intercept information, it can also be used in an ethical way if
confidential information is not monitored. In this sense, it can be used to
discover assets in networks, as it is shown in [14] if only packet headers are
analysed. In that work, authors also state that it can be used to prevent
and detect the intrusions in the network (e.g. detecting new IP addresses’
requests).

The system presented in [9] could be considered as a passive method
sniffing SNMP packets in each single network in the case that the integrated

resource does not remotely install anything in nodes of the targeted network.
Packet sniffing is usually used for network monitoring too. For instance, au-
thors in [15] also sniff SNMP packets to obtain metrics in a network specif-
ically design for cloud computing. The authors propose to install an agent
in each network and collect all the information in a non-relational database.
In contrast with the work in [9], the installation is not done using intrusive
methods.

While previous works focus only on addressing the problem using active
or passive methods, ISADT implements a combined approach in which both
methods are combined. Therefore, while active methods are used to detect
advanced characteristics of the network usage (e.g. the services that are being
used), passive methods provide network usage and ensure that even when it is
not possible to actively scan the network, some basic information is obtained
(e.g. the IP addresses and ports being used). Moreover, ISADT does not use
intrusive methods. Conversely, the network administrator needs to install
an agent in each of the networks to be monitored. Finally, ISADT includes
advanced analysis by making use of Al-based techniques and of a TPM to
secure the information, something that is not provided by the state-of-the-
art.

3. Intelligent and Secure Asset Discovery Tool (ISADT)

One of the main limitations that existing solutions have is dealing with
the network isolation. ISADT copes with this challenge by implementing a
distributed approach to detect assets in different isolated networks. Moreover,
ISADT uses Al techniques for two purposes; firstly, to detect the ports that
are often used together and their associations, making it possible to raise
alerts when a port that is commonly used together with others is not actually
being detected, then, an analysis of the time series produced by the traffic
per unit of time that goes through each port is performed to detect unusual
traffic peaks.

The other main innovation of the proposed ISADT is that both security
hardening and reliability of communications are provided by the use of a
Trusted Platform Module (TPM) [2]. This device is used to ensure that
the hardware and the software are not maliciously altered, disabling the
Application Programming Interface (API) of ISADT to retrieve or to store
information when an essential change is detected.

Main Node

Relational
Database |

$

Web Interface

Visualization <::> ‘

& 0"

Distrib. Node Distrib. Node Distrib. Node

Other applications

Agent

i
B

Figure 1: ISADT’s distributed architecture.

Agent

o
oh

Local Network

The distributed architecture of ISADT, is illustrated in Figure 1. In this
architecture, similar to [9] or [15], an agent must be running in each isolated
network. However, in the case of ISADT, the installation of the agent does
not imply an unsupervised intrusion in the network, since it must be firstly
registered and authorized by the network administrator for each VLAN.

The devices in which the agent is installed are called Distributed Nodes
(DNs). Each agent will be in charge of discovering all devices that are con-
nected to the VLANSs, which can be reached from DN, and then analysing
all traffic that goes through them. All gathered information is sent to a Main
Node (MN), which must be reachable from all DNs, and stored in a relational
database. ISADT users (i.e., network administrators, cyber security analysts,
etc.) and other applications must only interact with this MN, which is, at
the same time, in charge of applying different Al-based techniques to find
patterns in the usage of ports.

DNs, external applications, and users communicate with the MN by
means of a Representational State Transfer (REST) Application Program-
ming Interface (API), which provides a service based on REST-style archi-
tecture [16]. The communication with the API is done by the use of secure

methods by which specific DNs can only submit information of their as-
sociated VLANSs and specific external applications can only access specific
information, as it will be explained in Section 3.2.3.

Finally, the architecture incorporates a Web Interface that can be used
by the network administrator to define the VLANSs to be scanned and the
existing DNs. This interface includes a Visualization Module that can be
used to inspect the state of VLANs at any timestamp.

3.1. Distributed Nodes

As it has already been stated, DNs are located in the different isolated
networks and are in charge of scanning the devices present in them and
collecting all their information.

When a specific device is going to be scanned by a DN, the information
that is gathered from it is the following: its IP and MAC addresses, its oper-
ating system, its list of ports in use (and their status), and, when possible,
the list of associated services running on each port and their versions.

To gather this information, the first characteristic to identify for each
device is its IP address. Then, the MAC address associated to the IP address
is obtained by making an Address Resolution Protocol (ARP) query to the
local ARP table. The rest of the information can be discovered by the use
of the Nmap tool [3], as described in Section 2. Therefore, Nmap tool is
used to retrieve the operating system and the list of open ports with their
associated services and versions when possible from the scanned devices.
However, ISADT provides several advantages with respect to Nmap, as it
will be discussed in Section 4.

3.1.1. Discovery of network assets
Regarding the discovery of network assets, there are three main problems
to be solved:

1. A new device might be connected to the network at any instance of
time. As any new device might suppose a risk, it is essential to register
it as soon as it is connected to the network.

2. An asset has already been registered, but its associated characteristics
(i.e., its open ports) change over the time.

3. A device has been protected against scans and is not possible to obtain
its assets by means of Nmap or other similar tools.

To solve the first problem, DNs capture the Dynamic Host Configuration
Protocol (DHCP) [17] traffic on each of the local networks that are mon-
itoring. When a DHCP-ACK packet is detected, the IP address is stored,
its associated host is immediately scanned with Nmap, and the resulting
information is sent to the MN.

However, this approach does not provide a solution for those devices which
do not make DHCP requests, i.e. when a static IP address has been assigned
or when the device has been re-connected to the network and the dynamic
IP address that had received before has not expired yet. To solve this, DNs
query their ARP cache tables in very short time frames (e.g. every second)
to check whether there are IP addresses that have not been detected before.
In that case, DNs will scan that host with Nmap and send the information
to the MN.

To solve the second problem (i.e., keeping the discovered information up
to date), DNs perform scans of the networks in regular time frames whose
length can be configured by the network administrator. This scan process
starts by sending Internet Control Message Protocol (ICMP) [18] ‘Echo re-
quest’ messages to all the range of IP addresses of the network. When the
tool obtains an ICMP ‘Echo reply’ message from an IP address, it is scanned
with Nmap to discover or update that information.

To cope with the third problem in which network devices have been pro-
tected and their assets cannot be detected by Nmap and/or they do not
response to ICMP ‘Echo request’ messages, DNs are also configured to inter-
cept all network traffic. As the process of analysing this traffic is done at the
same time as the detection of unusual peaks, it is described in section 3.1.2.

Finally, when a scan of any of the previous types is done, the information
is sent to the MN as a snapshot, including the timestamp at which the scan
started and the timestamp at which it finished. If, for any reason, the MN
cannot be reached (i.e. temporal lost of connectivity), the information is
temporally stored in a light embedded database of the DN, and will re-
attempt to send the information periodically.

3.1.2. Traffic analysis

Traffic analysis consists of analysing all IP packets that go through the
VLAN that is being scanned by a DN. This analysis is performed to achieve
two objectives: i) to detect IP addresses and/or ports in use that have not
been detected before; and ii) to detect unusual traffic peaks on each port.
With this purpose, the algorithm based on sliding windows that is described

in Algorithm 1 has been designed, being the parameter n the number of
sliding windows to be used.

Algorithm 1 sliding window(n)

prev_window = 0
while true do
Wait until new network packet is received
timestamp = timestamp of the packet in miliseconds
current_window = (timestamp / 500) % n
Include the IP, port and size of the packet in current_window
for all windows between prev_window and current_window do
for all IP and port combinations in window do
if IP and port are present in, at least, 75% of windows then
Set this IP and port as “in use”
Add packet size to accumulated size for this IP and port in the last minute
Remove any data older than 2 hours
if number of packets > 20 then
1 = mean of all sizes per minute for this IP and port
o = standard deviation of all sizes per minute for this IP and port
if size of the last minute > pu + 20 then
Raise new traffic peak notification
end if
end if
end if
end for
end for
prev_window = current_window
end while

The algorithm consists of defining n time windows between two times-
tamps with a length of 500 miliseconds (ms). Figure 2(a) shows an example
with n = 4 windows, starting at time ¢ = 0.

When a packet arrives, its timestamp is checked, and it is placed in the
corresponding window. Figure 2(b) shows an example after detecting the
following six packets for the same IP address:

1. Port number 80, with timestamp 200 ms.
Port number 22, with timestamp 450 ms.
Port number 80, with timestamp 630 ms.
Port number 53, with timestamp 1024 ms.
Port number 23, with timestamp 1360 ms.

AR ANl

Port number 80, with timestamp 1780 ms.

10

I [[N oy O

t=0ms t=500 ms t=501ms t=1000 ms t=1001 ms t=1500 ms t=1501 ms 1=2000 ms

(a) Initialization of the algorithm.

port=80,t =200 port =80, t=630 port=53,t=1024 port=80,t=1780
port=22,t =450 port=23,t= 1360

t=0ms t=3500 ms t=501ms t=1000ms t=1001 ms t=1500 ms t=1501 ms t= 2000 ms

) Windows status after detecting six packets.

port=80,t=630 port=53.t=1024 port= 80, t=1780
port =23, t=1360

t=2001 ms t=2500 ms t=501 ms t=1000ms t=1001 ms t=1500 ms t=1501 ms t=2000 ms

(c) Windows status after the first overflow.

Figure 2: Sliding windows algorithm with n = 4.

When the timestamp of a new packet is greater than the upper limit of
the last window, an overflow happens. In this situation, the algorithm acts as
a circular list and re-uses the first window as the next one, re-defining its time
limits, as shown in Figure 2(c), after detecting a packet whose timestamp is
greater than 2000 ms.

When an overflow happens, the content of the window that is going to
be replaced needs to be removed from it. The packets that are going to be
removed are considered as new assets if they had not been discovered before.
Many applications (the TCP-based ones) open ephemeral ports to maintain
the communication and these ports should not be considered as actual assets.
For this purpose, a port is not considered as ephemeral if it is present in, at
least, the 75% of the windows at the removal time. In this situation, the port
is considered as a new asset and sent to the MN. In the example of Figure
2, port 80 is present in three of the four windows when it is going to be
removed, so it will be communicated to the MN, while port 22 is only in the
first window, is not considered as a new asset.

Then, according to the other functionality of the algorithm, the sizes of
the packets that are going to be removed are temporally aggregated in one

11

minute groups. By storing these, what is actually stored is the throughput
of the ports in bits per minute (bpm). Only the information of the last two
hours is stored. For each port, the mean, u, and the standard deviation, o,
of its throughput along the time are calculated.

When there are at least 20 packets for a specific port (so that the sample is
significant) and a new packet is received, it is checked whether the throughput
of the last minute is greater than pu + 20. In that case, it is considered as
a having a traffic peak in that minute and a notification of a traffic peak is
sent to the MN.

3.2. Main Node

The MN is the global coordinator of the system and in charge of storing
all the information that is collected by the DNs. Moreover, any external
application and users must retrieve the information through this node. A
copy of the software of the agent running in every is also stored in this MN
and, when a new DN is going to be deployed, it must connect to the MN to
download a trusted copy of the software.

Therefore, the functionalities of the MN make of it the most critical one,
since: i) it contains a lot of information that might be exploited with ma-
licious purposes; and ii) there are different users, services, and applications
that must be granted with read and/or write privileges. Because of this, the
architecture of this node is composed of several layers and modules, which
ensures information security and provides specific users access to specific
information.

Finally, as it will be explained in section 3.2.1, the MN Software is in
charge of analysing the ports in use in each device that have been detected,
finding patterns about the ports that are usually used together and raising
alarms in the case a port is not being used, while a set of ports that are
usually used together with it are being used.

3.2.1. Main Node Software and association rules

The Main Node Software is in charge of carrying out any data process-
ing that is needed before storing the information in the relational database.
Specifically, it takes any information given by the Access Interface and stores
it in Relational Database.

Moreover, this software is in charge of discovering patterns in the utiliza-
tion of ports. Specifically, the Apriori algorithm [19] is used to find association
rules between the ports. This algorithm identifies assets (ports in this case)

12

which are frequently used together. For doing this, it starts by counting the
frequency of each port. Then, it counts the frequency of each pair of ports,
and the frequency of each triplet of ports.

When doing this process, if a tuple of ports does not obtain a frequency
greater than a specified parameter, supersets of that set (any set that already
includes the ports in that tuple), is not considered to make the algorithm
more efficient. This parameter threshold is known as support and in the
proposed architecture it has been set to 0.5.

Another parameter of the algorithm is the confidence, which indicates
the relative support of the whole rule with respect to the support of its
antecedent. In the proposed architecture, the confidence has been set to 0.97.
The resulting rules will look like the one in Equation 1.

{(80, open), (22, open)} = {(23, filtered), (8080, open)} (1)

By keeping track of the ports discovered through each scanning iteration,
the algorithm generates a rule-based Machine Learning model that computes
the likelihood of appearance of an specific set of ports given a machine’s status
(set of ports in a device).

After receiving a scanning snapshot, the MN software looks whether the
ports with highest probability to appear running in each host are in fact
there. In negative case, an alarm is generated, stored and prompted in the
web interface. Moreover, to keep an updated stamp of the actual situation,
the association rules are derived after a configurable number of receptions of
scanning snapshots.

Therefore, using the rule in Equation 1, if in a new snapshot, a device
has the ports 80 and 22 with status set as “open”, but the port 8080 is not
used and the port 23 has “open” in its status, two alerts will be generated:
one to indicate that the port 8080 is not being used, and it would be very
likely to be in use, and to indicate that the status of the port 23 is not the
expected one.

3.2.2. Relational database

The Relational Database is in charge of storing the information about
the networks to be scanned, which is directly provided by the system ad-
ministrator. In this regard, the relational database firstly stores information
about the appropriate credentials. Then, the system administrator registers
the information about the DNs that will compose the whole system, as well

13

Table 1: Available endpoints in the REST API.

Resource GET POST

/vlans Returns a list of all | Creates a new snapshot for
VLANS, including their | a specific VLAN.
associated snapshots.

/vlans/snapshot- | Returns all the informa- | Method not allowed (405).
id tion gathered for a specific
VLAN and snapshot.

/configurations Returns the configuration | Method not allowed (405).
of a specific Distributed
Node.

/presence_check Returns whether or not the | Method not allowed (405).
MN has stored informa-
tion from a specific IP and
MAC.

as the network IP address and mask of the VLANs to be scanned by each
specific DN. When this information is stored, the relational database will
also store all the information about each scan that is sent by the DNs.

3.2.3. REST API

All the reading and writing operations which involve the MN, must be
done by means of calls to the REST API module, which provides a secure
access to the information.

This API incorporates several secure endpoints to send and retrieve in-
formation. The API has been secured throughout a token-based system, in
which each actor owns an API key which will grant specific permissions to
access specific endpoints and methods. Token validation is performed before
the access to any of the functionalities, thus being necessary to be passed as
a parameter to any endpoint.

Taking everything into consideration, Table 1 shows the endpoints (asso-
ciated to their GET or POST method) that have been defined .

3.2.4. Web Interface and Visualization Module
The Web Interface is a web service that is used to administrate the tool.
When a new node is registered, the Access Interface assigns a new token to

14

VLAN: beast_vlant
Pt Host Mame: 138.4130.217
| - Furcottonpne 194 Operating System: Microsoft Windows Server 2008 R2 or Windows 8.1

Port Service

st
(e 135 Micresoft Windows RPC
10413 188 AR
i 130 Microsaft Windows netbios-ssn
e
PRI 445 Microsoft Windows 7 - 10 microsoft-ds
.
© pp

3389 Microsoft Terminal Sorvice

&

3880 Mbedthis- Appwen

6002 SafeNet Sentinel Protection Server

i8¢ 83 ¢¢%

Figure 3: Viusalization of a specific VLAN and the information about one of its assets at
a specific timestamp.

it and this token is shown in this web interface so that the node starts to
operate.

In addition, the system administrator may grant access to specific end-
points to other applications through the Web Interface. Similarly as in the
case of the DNs, a token for these applications is shown and it must be used
by them when making a request to the REST API.

The Web Interface includes a Visualization Module that allows the system
administrator to visualize each VLAN and its detected assets and alerts at a
specific timestamp. In order to do this, the user must define a date and time
and the tool will show a circle-pack diagram in which each circle represents
a VLAN (its identifier is shown on it).

If the user clicks on a specific VLAN, the visualizer focuses on that net-
work and the hostname of each device is displayed. Moreover, if the user
clicks on a specific device, the information about this device that is stored
in the tool is displayed on the right part of the diagram. This is shown in
Figure 3.

3.2.5. Access Interface

The Access Interface acts as an intermediate layer between the REST
API and the other components of the MN. It is in charge of coordinating
the flow of information in the MN and also regulates the information that

15

can be read from or written in the Relational Database or processed by the
Main Node Software. In this sense, it provides a secure access to the API by
means of a token system.

When a new agent is registered in the Access Interface, it generates a
new token that must be used by the agent when it is going to use the REST
API. This token is generated using the information in the TPM of the MN,
as it will be explained in the next section, and may change if the node may
be compromised so that the agents cannot store new information or retrieve
the existing one.

3.3. Trusted Platform Module

A TPM is a hardware device designed to provide hardware-based security
functions to ensure platform integrity and securely storing keys. It is part of
a computer’s Trusted Computing Base (TCB), i.e. the collection of software
and hardware components that enforce its security policy.

TPM’s role in TCB is to ensure its trustworthiness by performing a mea-
sured boot, a method of booting in which each component in the boot se-
quence checks the next component before passing control to it. After each
individual checking process, each component sends a hash to the TPM, which
is stored in its Platform Configuration Registers (PCRs).

Moreover, in order to enable the host system to perform configuration
checks during every power-on state, TPM must reflect any changes occur-
ring in the system’s integrity during its lifetime. It does it by updating the
correspondent PCRs based on a hash of the data used to modify a specific
component, derived by Equation 2.

PCR,; = SHA(Concatenation(PCR;, SHA (modification data))) (2)

By keeping a record of both the original PCR state and the digest result-
ing from the hashing of the modification data, the system is able to verify
the expected new value of the PCR at power-up (and would produce an error
or disable specific functionalities if it does not match with the stored PCR).

The proposed method to secure the MN is based on the ability to access
PCRs on execution time, being able to monitor whether a modification of
the system’s integrity took place or not.

16

3.3.1. Proposed method to secure data

As previously mentioned, the methodology to secure the information con-
tained in the MN involves periodically accessing PCRs in order to monitor
the system’s integrity. With this purpose, the MN keeps track of potential
hardware changes taking place in the PCRs 0 to 7, as these ones can reveal
any hardware configuration in the system [20].

After accessing these PCRs, the application will generate its own hash
based on their information. This hash will then be concatenated to the tokens
associated to every credential present on the application’s database.

Since these new tokens are perfectly separable into its two main com-
ponents, the application is able to verify the system’s integrity each time
it retrieves the state of the PCRs from the host system. By hashing the
newly obtained PCRs and comparing them to the PCR-hash present in its
tokens, in case of mismatch between them, the system will be informed of
their modification, prompting the system administration of this occurrence
and disabling the correspondent tokens (and, hence, the services that use
those tokens) until the occurrence is solved or verified.

4. ISADT Testing and Validation

Asset discovery is a crucial task that needs to be accurately performed.
The discovery of assets that are connected to the network of an organization
allows to identify not only unauthorized connections, but also to identify
their characteristics and potential vulnerabilities that can compromise an
organization. Current asset discovery tools offer a set of functionalities that
covers most of the necessities of system administrators to potentially protect
a network. However, these tools still lack several functionalities that would
substantially improve the potential necessities in all the facets around the
discovery of assets.

Our proposed solution relies on the creation of a set of innovative com-
ponents and functionalities that are built on top of the very well-known
Nmap tool. While Nmap provides a robust functionality, the tool lacks sev-
eral features that would help to improve the cyber security of an organization.
ISADT has been designed and developed to offer new features and provide a
ground-breaking solution that would help to improve the analysis of network
organizations.

The current section will deep into the analysis of some of these charac-
teristics from both a qualitative and quantitative point of view.

17

4.1. New features

As it has been described, ISADT implements a set of new functionalities
that enhance the capabilities of the base tool (Nmap) in the task of discov-
ering new assets. Table 2 shows a comparison between ISADT and Nmap for
the different implemented capabilities that cannot be quantitative measured.

Table 2: Comparison between ISADT and Nmap for new qualitative-evaluated function-

alities.

Feature

ISADT

Nmap

Execution in a distributed
environment over different
VLAN:S.

Implemented distributed architecture
that allows automatic execution of
the discovery of assets in independent
VLANs. Each VLAN can be scheduled
differently.

It is necessary to
execute Nmap
independently
in each VLAN.

Automatic =~ VLAN-data | Implemented capability of integrating | No integration
centered integration. different VLAN data in a single point | capabilities
(main node) as part of its distributed | of data from
architecture. different execu-
tions/VLANS.
Use of TPM as a pro- | Integrated mechanism that makes use | Lacks this func-
tection system to detect | of TPM (when available — and with op- | tionality.

hardware modifications
and disable scanning
functionalities to protect
system integrity.

tionally enabling) to detect potential
hardware changes that can imply a sys-
tem breach.

Port /service pattern
recognition to identify
potential vulnerabilities

based on devices not fol-
lowing common patterns.

Implemented functionality based on
a machine learning algorithm named
A priori that allows to identify tu-
ples of ports/services that typically are
open/available together. This function-
ality allows to identify machines with
differences on those patterns to alert
about them to be further investigated
as potential threats.

Lacks this func-
tionality.

Traffic network peaks
automatic analysis
(ephemeral port anal-
ysis).

Implemented functionality to measure
if there are peaks on the network traf-
fic to identify potential threats. ISADT
focuses on the ephemeral ports as they
are used in a short time for TCP/IP
communications.

Lacks this func-
tionality.

Real-time asset detection.

Implemented traffic analysis that allows
to detect when a new device is con-
nected to a network, allowing to execute
immediate scans over the device with-
out needing to wait for the scheduled
analysis.

Lacks this func-
tionality.

18

4.2. Distributed architecture complexity evaluation

The distributed architecture proposed for our tool is based on the idea
that different VLANs can be scanned by applying Nmap to each of those
VLANs. Apparently, behind this approach the results between Nmap as a
standalone solution and ISADT could be considered as similar, and hence,
can be thought as similar results would be provided. However, some consid-
erations need to be taken into account. ISADT provides further capabilities
for the recognition of devices that Nmap is not providing. When an Nmap
execution is running, devices that are connected and disconnected in the net-
work might not be detected by Nmap. However, ISADT could detect them
by using the traffic sniffing capabilities to execute ad-hoc scans over these
devices.

Another element to consider are the parameters referred to the complexity
of the execution. Temporal and spatial complexity are important elements
that need to be evaluated.

The methodology for the evaluation of the tool and its comparison against
Nmap is based on the execution of both tools in the same scenario. For this
evaluation, we have prepared 6 different execution scenarios:

e Scenario 1 (S1): 1 VLAN with 2 static machines.

e Scenario 3 (S3): 1 VLAN with 10 static machines.

(S1):
e Scenario 2 (S2): 1 VLAN with 5 static machines.
(S3):

e Scenario 4 (S4): A total of 3 VLANs were prepared. VLANTI contains 1
static machine. VLAN 2 contains 3 static machines. VLAN3 contains
2 static machines and 2 DHCP machines.

e Scenario 5 (S5): A total of 3 VLANs were prepared. VLANT1 contains 2
static machines. VLAN 2 contains 6 static machines. VLAN3 contains
4 static machines and 3 DHCP machines.

e Scenario 6 (S6): A total of 3 VLANs were prepared. VLANT1 contains 4
static machines. VLAN 2 contains 10 static machines. VLAN3 contains
6 static machines and 4 DHCP machines.

Each machine has a different configuration (operation system, open ports
and services). The full list of machines configurations per scenario can be

19

found in supplementary materials. The static machines are always connected
to the VLAN while the DHCP machines are dynamically connected in a
specific moment of the scan process.

Therefore, several experiments were run. For each scenario, both Nmap
and ISADT Distributed Node, have been executed 20 times in order to obtain
statistically significant results. In each execution the following parameters
were measured:

e Time (in seconds): how long takes to the tool to perform the scan of
the corresponding VLAN. In scenarios 4, 5 and 6 these parameters are
independently measured per VLAN and the results among tools will
be compared in those VLANs as different VLANs might take different
times due to the network load.

e Maximum virtual memory (in Megabytes): the maximum amount of
memory consumed by the process by which the tool was executed.

e Minimum virtual memory (in Megabytes): the minimum amount of
memory consumed by the process by which the tool was executed.

e Average virtual memory (in Megabytes): the average amount of mem-
ory consumed by the process by which the tool was executed.

e Number of ports/services discovered in each machine: how many (and
which ones) ports were discovered in each of the machines. The idea of
this measure is, firstly, to measure how many devices were detected; sec-
ondly, to compare the results in terms of the number of ports/services
found.

To measure the execution times, the date command before and after ex-
ecuting each tool has been run (the difference between these values provides
the execution time). To measure the memory values, the PID of each process
has been obtained and, then, the /proc/<pid>/status file has been period-
ically queried. Table 3 shows the mean values of these parameters in the 6
scenarios (S1 to S6) for the 20 executions for each VLAN and configura-
tion using an ISADT Distributed Node, while Table 4 presents these same
parameters using the Nmap software.

Figure 4 shows a comparison of the execution times of ISADT (blue) and
Nmap (red), according to the number of ports in each scenario and VLAN.

20

Moreover, a trend line is included for each tool. It can be seen that Nmap
takes less time than ISADT when there are few ports (i.e., approximately,
less than 7), while ISADT is more faster when there are more ports, what is
the most common scenario in real networks. This is due to the parallel nature
of ISADT, needing some more time for initialization, but taking advantage
of this when the number of ports to be scanned is large enough. Regarding
the memory, Nmap usually requires less memory, since it does not require to
store information about more threads in memory. However, it can be seen
that the memory usage is constant in ISADT, regardless of the number of
ports to be discovered.

Table 3: Mean of collected data from a Distributed Node for each scenario and VLAN.
Scenario Time | Max. mem. | Min. mem. | Avg. mem. | Number
& VLAN (s) (MB) (MB) (MB) of ports

S1- VLAN1 | 529 11,015.2 520.8 10,334.8 6
S2 - VLANI1 | 176.2 11,015.2 532.8 10,755.7 17
S3 - VLAN1 | 187.1 11,016.2 575.2 10,773.5 28
S4 - VLAN1 32.2 11,015.8 569.8 10,141.4 2
S4 - VLAN2 | 129.5 11,015.4 525.6 10,676.5 8
S4 - VLAN3 | 51.0 11,015.6 854.6 10,242.3 8
S5 - VLAN1 | 46.5 11,014.8 567.0 10,310.4 5
S5 - VLAN2 | 58.9 11,015.4 564.8 10,409.0 9
S5 - VLAN3 | 130.0 11,015.6 850.8 10,661.9 15
S6 - VLAN1 | 83.1 11,016.0 767.6 10,689.9 15
S6 - VLAN2 | 56.5 10,789.0 868.2 10,176.3 9
S6 - VLAN3 | 178.5 11,014.4 880.0 10,648.9 21

4.3. Validation of the new features

However, more important than the performance analysis is the validation
of the new features included in ISADT that Nmap does not include.

This section aims at validating these new features. For that purpose, the
set-up of two experiments is detailed and, then, their results are discussed.

4.8.1. Experimental set-up

In the first setup, a controlled environment with virtual machines using
Vagrant [21] as Hypervisor, since it provides very simple management of
the virtual machines through a command-line interface. Moreover, synthetic
traffic has been designed to carefully test all the functionalities of the system
(except the Apriori algorithm, since there are few data in the experiment for

21

Table 4: Mean of collected data from Nmap for each scenario and VLAN.

Scenario Time | Max. mem. | Min. mem. | Avg. mem. | Number
& VLAN (s) (MB) (MB) (MB) of ports
S1- VLAN1 | 26.2 8,748.0 1,594.4 7,448.0 5
S2 - VLAN1 | 231.0 8,753.0 1,600.0 8,598.0 16
S3 - VLAN1 | 371.7 8,748.0 1,712.8 8,653.6 27
S4 - VLAN1 2.7 1,602.4 1,602.4 1,602.4 1
S4 - VLAN2 | 102.1 8,748.0 1,711.6 8,407.8 7
S4 - VLAN3 | 22.7 8,748.0 1,811.2 7,372.3 5
S5 - VLAN1 | 23.6 8,748.0 1,746.4 7,358.6 4
S5 - VLAN2 | 39.8 8,748.0 1,764.0 7,900.2 8
S5 - VLAN3 | 120.2 8,748.0 2,165.8 8,478.0 11
S6 - VLAN1 | 107.7 8,748.0 2,558.4 8,466.8 14
56 - VLAN2 | 45.6 8,748.0 1,632.8 7,983.8 8
S6 - VLAN3 | 266.9 8,748.0 1,863.6 8,619.6 16
400
.'-.
350
300
L]
250
W e
‘G-J‘ 200) . =
-E 150 :
¢ 8-
100 o7 "
Lt . * ISADT
< ,.;' v Nmap
i Lig
0 5 10 15 20 25 30

Number of ports

Figure 4: Time comparison.

that purpose, and it is validated in the other experiment). In the second setup,
the system has been deployed in the real network of a research laboratory.

4.3.2. Experiment in a controlled environment

In this experiment two VLANs, whose network addresses are 192.168.11.0/24
(VLAN 1) and 10.8.0.0/24 (VLAN 2), have been configured. The infrastruc-
ture deployed in the virtual machines is shown in Figure 5. A server that is

22

connected to both VLANs acts as DN for both of networks. VLAN 1 only
has connected the servers that act as MN and DN (and it will not be anal-
ysed), while VLAN 2 has connected four hosts and two servers (one of them
running the DN). All the hosts and servers run Ubuntu 20.04 LTS and their
network adapters have been configured as “internal network” so that they are
isolated of the larger host network. To achieve this isolation, Vagrant makes
use of the network segmentation concept, which consists on dividing a single
network into multiple logical subnetworks, each of which can be configured
with its own gateway and routes. Therefore, in internal network mode, the
subnets do not use the host as gateway and they can only communicate with
the other internal networks by means of static routes. This approach allows
the experiment to be carried out in a completely separate and controlled
environment.

Main Node AL

192.168.11.2/24

Distributed

192.168.11.3/24
Node

40.8.0. SBIZA—E

10.8.0.2/24 SERVER

10.8.0.4/24 DHCP

H gy

HOST 4

HOST 2

HOST 3 VLANZ

Figure 5: Infrastructure for the experiment in a controlled environment.

Regarding the synthetic traffic, all the packets have a size of (100 + s)
bytes, where s is a random component uniformly distributed in [0, 100]. Two
different types of traffic have been generated:

e Low-intensity traffic: traffic is generated every (500 + d;) ms, where d;
is a random component uniformly distributed in [0,200]. Every time
that traffic is generated, a burst of 1 to 3 packets is generated.

23

e High-intensity traffic: traffic is generated every (5000+ds) ms, where d
is a random component uniformly distributed in [0,2000]. Every time
that traffic is generated, a burst of 5 to 10 packets is generated.

Table 5 contains the traffic that is generated between each pair of devices
and ports (all the source ports are random ports), including the traffic type
and the time interval (in hours) in which the traffic is generated.

Table 5: Traffic details between each pair of devices and ports.

Source host | Dest. host | Dest. port | Intensity | Time int. (h)
HOST 1 SERVER 1001 High 0:00 - 2:00
HOST 1 SERVER 1002 Low 0:00 - 0:15
HOST 1 HOST 3 1003 Low 1:20 - 3:00
HOST 2 SERVER 2001 High 0:00 - 3:00
HOST 2 SERVER 2002 Low 0:00 - 2:00
HOST 2 HOST 3 2003 Low 1:20 - 3:00
HOST 3 SERVER 3001 High 2:40 - 3:00
HOST 3 SERVER 3002 Low 2:40 - 3:00
HOST 3 SERVER 3003 Low 2:40 - 3:00
HOST 4 SERVER 4001 High 1:00 - 2:30
HOST 4 SERVER 4002 Low 1:00 - 2:30
HOST 4 HOST 3 4003 Low 1:20 - 2:30

The experiment has a duration of 3 hours and the periodic scans are
performed every 30 minutes and with the previous traffic it can be tested
the discovery methods of periodic scans and traffic analysis (this last one
because HOST 3 and HOST 4 begin to send packets to a new port between
two scans).

To verify the functionality of the DHCP discovery method, HOST 4 is
connected 50 minutes after the experiment starts with 4 open ports during 10
minutes. To verify the functionality of the ARP discovery method, HOST 3
is connected 1 hour and 20 minutes after the experiment starts with a static
[P address (though it does not start to send any traffic until 2 hours and 40
minutes after starting the experiment).

4.8.3. Experiment in a real network

Regarding the experiment in a real network, two different VLANs of
a research laboratory have been scanned: 192.168.1.0/24 (VLAN 1) and

24

192.168.50.0/24 (VLAN 2). The infrastructure if the virtual machines is
shown in Figure 6. A server that is connected to both VLANs acts as MN
and as DN for VLAN 2, while one server presnet in VLAN 1 acts as DN for
that network.

WLAM 1
Distributed E
Node
-] -1
l_‘— I_:‘J
& =5

= =
= (=
D o wo D

Distributed
Main-Node Mote-
WVLAMN 2

=
e

Figure 6: Infrastructure for the experiment in a real network.

In this case, the only knowledge about the elements in the network is
that there is one server connected to the VLAN 1, whose IP address is
192.168.1.50, and that the IP addresses of the routers in VLAN 1 and VLAN
2 are 192.168.1.1 and 192.168.50.1, respectively.

Moreover, it is also known that a total of 9 users were connected to the
networks during the experiment (divided by both of them). These users were
asked to connect and disconnect their smartphones to the network during the

25

experiment. Besides those users, more of them might be working remotely,
but using their desktops in the laboratory remotely. Moreover, they were
asked to connect their smartphone to the network as well.

4.4. Validation of the proposed Al-based system

This subsection discusses the results of the two experiments that have
been described before. Both of them were successfully completed.

4.4.1. Results of the experiment in a controlled environment

In the case of the experiment in the controlled environment, all the IP
addresses of the devices and their ports being used were discovered and their
status updated by the regular scans. Moreover, the DHCP discovery method
detected HOST 4 after 59 minutes of execution (it was connected at minute
50), and the ARP discovery method detected HOST 3 after 1 hour and 21
minutes of execution (it was connected a minute before).

Regarding the traffic analysis method, hundreds of ports were discovered.
They correspond with the random ports that were used to send packets to
the server. Furthermore, notifications of traffic peaks were mostly detected
on ports 1001, 2001, and 4001 of the server, which correspond with the ports
that received high intensity traffic bursts.

4.4.2. Results of the experiment in a real network

With respect to the experiment in the real network, 4 snapshots with
regular scans were received from VLAN 1 and 5 of them were received from
VLAN 2. All the snapshots from VLAN 1 contained the same 6 IP addresses,
with a number of total discovered ports ranging from 28 to 30 in each of them.

Regarding the snapshots received from VLAN 2, all of them contained the
same 4 IP addresses. Moreover, the second, the fourth and the fifth snapshots
contained an extra [P address too (the same one in all of them).

In the case of the DHCP discovery method, four IP addresses were de-
tected in VLAN 1 and one was detected in VLAN 2. As these addresses do
not appear in the snapshots of the regular scans, it seems that they were
devices that were connected and, not much time later, disconnected.

Regarding the ARP discovery method, it detected 15 IP addresses, which
were very likely devices that had already been connected before and they did
not need to obtain a new IP address using DHCP. Furthermore, an average
of 24 ports were discovered between each pair of scan snapshots with the
method of traffic analysis.

26

Related to the Al-related techniques, a whole of 454, 19 and 5923 asso-
ciation rules between the ports were generated in each of the set of learnt
rules, respectively. One of the rules that were learnt in the last set is shown
in Equation 3. Finally, 8 traffic peak notifications were detected in VLAN 1
(most of them related to the router and the server) and 3 in VLAN 2.

{(3394, any)} = {(7788, any)}

{(1990, any), (18017, any), (53, any), (80, any)} = {(5473, any)} 3)

These results are congruent with the infrastructure that was use in the
experiment, validating all the functionalities of the proposed intelligent ar-
chitecture.

4.5. ISADT security analysis

Finally, in order to make it sure that the tool itself is vulnerability-free,
the source code of the tool has been analysed with SonarQube, which is an
open-source tool that inspects the code, detecting bugs and vulnerabilities,
among others [22]. SonarQube has been used since it provides easy integration
with other developing tools that have used to develop the system, such as Git
or Jenkins, thus providing a continuous framework to maintain the quality
of the code and preserving it from vulnerabilities. The preliminary results
of this analysis showed that the code of the tool presented 15 bugs and 19
vulnerabilities.

Regarding the bugs, there were two types: i) not closing resources properly
with a finally statement or a try-with-resources; and ii) objects that were used
and their value might be null. All these bugs were properly addressed and,
in a second round of code analysis, SonarQube reported no bugs.

Regarding the vulnerabilities, there were two types too: i) methods de-
clared as public; and ii) persistent entities that should not be such (entities
that were stored in a database, but they were not needed to be stored). Again
these vulnerabilities were addressed and in the second round SonarQube did
not report vulnerabilities.

Moreover, during the development of the tool the log4; vulnerability
emerged [23], which was immediately solved (even before running the Sonar-
Qube analysis) by updating the library to its latest version. Finally, this tool
will be used in any future development of the tool, continuing the effort in
enhancing the the security of the developed tool.

27

5. Discussion

The objective of this work was to propose an intelligent tool for asset dis-
covery in medium and large sized networks. Having a full inventory of network
assets (such as devices, their open ports, services running in them, etc.) is
very important for any organization. Moreover, in this kind of large networks,
the devices and assets that are connected change constantly and, therefore,
having an updated snapshot of the devices and the ports and services that
they are using is crucial to know any potential open door to malicious soft-
ware or users.

This inventory can be very helpful to control all the software and sources
of vulnerabilities so that network administrators can take any preventive
actions before an attack happens.

Moreover, the information discovered by ISADT can be used by other
tools and methodologies, like the one presented in [24], to predict future inci-
dents and identify new threat patterns in each single asset. This information
can also be used to detect the cyber-security and the privacy risks in a device
before an information exchange is done, as presented in [25].

Regarding the obstacles that may emerge when using ISADT, the main
limitation that it can be foreseen is the restriction of the use of the Nmap
tool in a network or that, being possible to use it, the devices are configured
not to reply to these requests. In these situations, the system would not be
able to detect the services, but by means of the other modules it could detect
the IP addresses in use, as well as the ports being used.

Moreover, given the amount of workload that the DNs need to process,
it is essential that they incorporate a Central Processing Unit (CPU) which
is able to execute several parallel threads in order for it to work fluently and
with no delay. For instance, in the experiment in a real network, the DNs
had 8 cores, each of which being able to execute 2 simultaneous threads.
Nevertheless, regarding the number of VLANs to be monitored, given that
the MN has little workload, it can scale with no problem to any feasible
number of VLANSs in a large organization.

6. Conclusions

In this paper, a novel approach for the discovery of network assets has
been presented. Even if it can be used for any computer network, as shown
in the evaluation, it can be more advantageous in medium and large-size

28

networks. The presented tool implements a distributed architecture which
combines active and passive detection methods for network asset discovery.
Unlike some of the previous works for asset discovering, the proposed ap-
proach is not invasive, since the agents need to be deployed by the network
administrator and they will always know where an agent is running.

ISADT contains four new innovative features with regard to the state-of-
the-art works: it 1) is able to find assets in isolated networks; ii) makes use of a
TPM to secure all the information that has been previously found; iii) makes
use of artificial intelligence techniques to detect common associations in the
usage of ports by means of an Apriori algorithm; and iv) detects anomalous
traffic peaks on specific ports in the network using a time series modelling
approach.

The asset inventory obtained by ISADT can be further analysed to detect
vulnerabilities associated to the services that the tool finds. Besides that, the
network administrator can take the actions that they consider when an alarm
about a strange combination of used ports or about an anomalous traffic peak
is present.

These characteristics have been validated by setting up two experiments:
one in a controlled environment and another in a real network.

Moreover, the tool has been evaluated and compared with Nmap, demon-
strating that ISADT is able to detect the same ports as Nmap in a shorter
period of time, which depends on the number of open ports in the network
(the more open ports, the more advantageous that ISADT will be with re-
spect to Nmap). This reduction of time is of a great importance since, if the
scanning interval is short and the scan takes a long time, it might not finish
until before the time-out for the next scan.

Finally, a qualitative comparison has been performed by specifying the
features provided by ISADT that are not available in Nmap, like the capa-
bility of scanning isolated networks in a single execution environment, the
use of a TPM to secure the information and the implementation of IA-based
algorithms to analyse the collected information.

Acknowledgments

The research work presented in this article has been supported by the
European Commission under the Horizon 2020 Programme, through funding
of the CUREX project (G.A. n 826404). The work has been also supported

29

by EIT Digital Innovation Actions, through funding of the Obviews project
(A.C: 20636-A2002).

References

[1] A. Munoz, A. Farao, J. R. C. Correia, C. Xenakis, ICITPM: Integrity
validation of software in iterative Continuous Integration through the
use of Trusted Platform Module (TPM), in: European Symposium on
Research in Computer Security, Springer, 2020, pp. 147-165.

[2] S. L. Kinney, Trusted platform module basics: using TPM in embedded
systems, Elsevier, 2006.

[3] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning, Insecure, 2009.

[4] Bromium Inc.: Hyper-connected web of profit emerges, as global
cybercriminal revenues hot $1.5 trillion annually, online; accessed 5
September 2021.

URL https://www.bromium.com/press-release/hyper-connected-web-of-profit-emerg

[5] Risk in focus 2020: hot topics for internal auditors, Tech. rep., European
Confederation of Institute of Internal Auditing (2019).

[6] G. Nguyen, S. Dlugolinsky, V. Tran, A. Lopez Garcia, Deep Learning for
Proactive Network Monitoring and Security Protection, IEEE Access 8
(2020) 19696-19716.

[7] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, B. T. Loo, Quanti-
tative Network Monitoring with NetQRE, in: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, Association for Computing Machinery, New York, NY,
USA, 2017, p. 99-112.

[8] H. J. Abdelnur, R. State, O. Festor, Advanced Network Fingerprinting,
in: Recent Advances in Intrusion Detection, Springer Berlin Heidelberg,
2008, pp. 372-389.

[9] J. C. Barroux, Network asset survey tool for gathering data about node
equipment, US Patent 6,220,768 (Apr 2001).

30

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Z. Trabelsi, W. El-Hajj, On investigating ARP spoofing security solu-
tions, International Journal of Internet Protocol Technology 5 (1) (2010)
92.

M. Lastovicka, M. Husak, L. Sadlek, Network Monitoring and Enumer-
ating Vulnerabilities in Large Heterogeneous Networks, in: NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1-6.

P. Calderon, Nmap: network exploration and security auditing cook-
book, Packt Publishing Ltd, 2017.

C. Yuan, J. Du, M. Yue, T. Ma, The Design of Large Scale IP Address
and Port Scanning Tool, Sensors 20 (16) (2020) 4423.

I. A. I. Diyeb, A. Saif, N. A. Al-Shaibany, Ethical network surveillance
using packet sniffing tools: A comparative study, International Journal
of Computer Network and Information Security 10 (7) (2018) 12.

M. Brattstrom, P. Morreale, Scalable agentless cloud network monitor-
ing, in: 2017 IEEE 4th International Conference on Cyber Security and
Cloud Computing (CSCloud), IEEE, 2017, pp. 171-176.

J. Navon, F. Fernandez, The Essence of REST Architectural Style,
Springer New York, 2011, pp. 21-33.

T. Rooney, Dynamic Host Configuration Protocol (DHCP), 2010, pp.
53-68.

J. Postel, RFC0792: Internet Control Message Protocol, RFC Editor,
1981.

R. Agrawal, T. Imielinski, A. Swami, Mining association rules between
sets of items in large databases, in: Proceedings of the 1993 ACM SIG-
MOD international conference on Management of data, 1993, pp. 207—
216.

W. Arthur, D. Challener, K. Goldman, Platform Configuration Regis-
ters, Apress, Berkeley, CA, 2015, pp. 151-161.

M. Hashimoto, Vagrant: up and running: create and manage virtualized
development environments, O’Reilly Media, 2013.

31

[22] V. Lenarduzzi, A. Sillitti, D. Taibi, A survey on code analysis tools for
software maintenance prediction, in: International Conference in Soft-
ware Engineering for Defence Applications, Springer, 2018, pp. 165-175.

(23] A. Jones, Security posture: A systematic review of cyber threats and
proactive security.

[24] C. Bellas, A. Naskos, G. Kougka, G. Vlahavas, A. Gounaris, A. Vakali,
A. Papadopoulos, E. Biliri, N. Bountouni, G. G. Granadillo, A method-
ology for runtime detection and extraction of threat patterns, SN Com-
puter Science 1 (2020) 1-13.

25] G. Gonzalez-Granadillo, S. A. Menesidou, D. Papamartzivanos,
R. Romeu, D. Navarro-Llobet, C. Okoh, S. Nifakos, C. Xenakis,
E. Panaousis, Automated cyber and privacy risk management toolkit,
Sensors 21 (16) (2021) 5493.

32

