# A Game Theoretic Approach for Securing AODV in Emergency Mobile Ad Hoc Networks

The 9th International Workshop on Wireless Local Networks

Emmanouil A. Panaousis

<u>e.panaousis@kingston.ac.uk</u>





#### Roadmap

- PEACE project & eMANETs
- Emerging Game
- AODV-Game Theoretic (AODV-GT) module
- Mission Critical Mobility
- Performance Evaluation
- Conclusions





#### PEACE project & eMANETs

- ICT EU FP7 Project (<a href="http://www.ict-peace.eu/">http://www.ict-peace.eu/</a>)
- Disaster Recovery Teams

Secure Mobile Ad hoc Communications







#### **Definition of the game**

- Two-player non-cooperative security games
- Players: MANET, malicious nodes
- MANET defends against blackhole nodes by using Host Intrusion Detection Systems (HIDSs)

 Blackhole nodes succeed to attract the data traffic and drop packets





# **Example**







# **Example**







#### **Strategy space**

#### MANET:

- $d_i$ : the MANET defends a route i
- $d_{-i}$ : the MANET defends any other route -i.

#### Any blackhole node:

- $m_i$ : the blackhole node attacks a route i
- $m_0$ : the blackhole node does not attack MANET
- $m_h$ : the blackhole node attacks a route h.





#### **MANET** payoff matrix

U(t)

PD(t): the utility of the MANET at time t

 $DC_i$ : the cost per hop of defending a route i

 $FC_i$ : the cost per hop of failing to protect a route i

| s.t.     | $m_i$                      | $m_0$             | $m_h$                                          |
|----------|----------------------------|-------------------|------------------------------------------------|
| $d_i$    | $PD(t) - DC_i$             | $PD(t) - DC_i$    | $PD(t) - DC_i - FC_h$ , for $h \neq i$         |
| $d_{-i}$ | $PD(t) - DC_{-i} - FC_{i}$ | $PD(t) - DC_{-i}$ | $PD(t) - DC_{-i} - FC_h$<br>for $h \neq i, -i$ |

$$DC_i = \frac{\sum_{j \in i} nn_j}{n_i}$$
  $FC_i = \frac{\sum_{j \in i} dens_j}{n_i}$ 

$$FC_i = \frac{\sum_{j \in i} dens_j}{n_i}$$

$$dens_j(R) = \frac{NR_j^2\pi}{A}$$

 $nn_j$ : the number of one-hop neighbors of node j

: a node that belongs to the route i

 $n_i$ : the number of nodes constitute

the route i

- N: the number of nodes within the transmission range of a node j

- R<sub>i</sub>: the transmission range

- A: the area of the MANET



#### **Attacker payoff matrix**

| s.t.     | $m_i$          | $m_0$ | $m_h$                           |
|----------|----------------|-------|---------------------------------|
| $d_i$    | $PA(t) - CA_i$ | 0     | $PA(t) - CA_h$ , for $h \neq i$ |
| $d_{-i}$ | $PA(t) - CA_i$ | 0     | $PA(t) - CA_h$ , for $h \neq i$ |

 $CA_i$ : is the cost of attacking a route i

PA(t): is the profit of each successful attack at time t





## Nash Equilibrium

- at NE: MANET defends the route with the highest P(t) DC<sub>i</sub> value
- $\max_{i} P(t) DC_i \rightarrow \min_{i} DC_i$
- any blackhole node prefers to attack the MANET instead of receiving zero utility

The strategy pair  $(d_1, m_1)$  is the NE of the game because is the dominant strategy of the non-zero sum game



#### **AODV-Game Theoretic**

- AODV is a reactive routing protocol for MANETs
- AODV-GT modifies/ extents the AODV to select routes in a way that the NE of the aforementioned game is achieved
- extension of AODV to carry the utility value  $u_A = \frac{1}{nn_A}$  of each node A

 $nn_A \longrightarrow$  the number of one-hop neighbors of node A



#### **AODV-Game Theoretic**

- AODV is a reactive routing protocol for MANETs
- AODV-GT modifies/ extents the AODV to select routes in a way that the NE of the aforementioned game is achieved
- extension of AODV to carry the utility value  $u_A = \frac{1}{nn_A}$  of each node A

 $nn_A \longrightarrow$  the number of one-hop neighbors of node A

- each node which receives a RReq adds the utility value to the packet
- source derives the average utility value of each route as

$$\bar{u_i} = \frac{nhops_i + 1}{\sum_{i \in i} nn_i}$$
  $nhops_i$ : number of hops in route  $i$ 





## **AODV-Game Theoretic (2)**

- source chooses the route with the maximum average utility
- Why ???
  - At NE:  $\min DC_i \longrightarrow \max \bar{u_i}$

$$DC_i = \frac{\sum_{j \in i} nn_j}{n_i}$$

- This route is the most secure and cost effective route in terms of HIDS sensors resource consumption
- Why most secure ???
  - The attacker prefers probabilistically to place himself in an area where the nodes' density is high
    - min DC<sub>i</sub> happens when the density of the chosen route's nodes is low
- Why cost effective in terms of HIDS resource consumption ???
  - At the NE less HIDSs participate in the intrusion detection





## **Mission Critical Mobility**



• simulates the movement of nodes during an emergency case in presence of obstacles (extension to network simulator ns-2)





#### **Simulation Results (1)**

UDP traffic, 1000m x 1000m







## **Simulation Results (2)**

TCP traffic, 1000m x 1000m







#### **Conclusions**

AODV-GT is an extension to AODV

- Requires the existence of HIDS
- Minimizes the consumption of HIDSs' resources
- Mitigates the harm of legitimate MANET nodes in presence of blackhole nodes





#### Thank you!

#### Emmanouil A. Panaousis

Wireless Multimedia & Networking Research Group Computing, Information Systems and Mathematics Kingston University London KT1 2EE, London, UK

e.panaousis@kingston.ac.uk

www.wmngroup.co.uk

www.panaousis.com

Tel. +44 (0)20 8417 2054



