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Abstract

Genotype imputation estimates missing genotypes from the haplotype or
genotype reference panel in individual genetic sequences, which boosts the
potential of genome-wide association and is essential in genetic data analysis.
However, the genetic sequences involve people’s privacy, confirming an indi-
vidual’s identification and even disease information. This work proposes a
secure genotype imputation model, which uses a linear regression model and
the homomorphic encryption scheme over ciphertext to impute missing geno-
types. The inference model is trained with float plaintext parameters, which
are round into integers to avoid high complexity homomorphic evaluation on
float number operations without bootstrapping operations. Even though the
rounding parameters in the inference model are not the same as those in the
trained model, We find that it will no effect on the outcome of the homo-
morphic prediction. Thus, a high-efficiency genotype imputation inference
model over the ciphertext is obtained while keeping the high-security level.
The simulation results indicate that the accuracy of the secure inference
model is almost the same as the original model trained on float parameters.
The secure inference model’s accuracy is 98.6% for a single genotype.
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1. Introduction

DNA sequencing is an indispensable part of medical diagnosis and treat-
ment, biotechnology, and genetic data analysis [1]. It can help researchers
understand and study the relationship between diseases [2], distant ancestors
[3], and genes. For example, the genome-wide association study (GWAS) [4]
aims to study the relationship between human diseases and complex traits.
However, due to individual genetic variation or genetic testing technology
issues, some genotypes in genetic sequencing are missing or low-quality. The
missing genotypes can affect the genetic information integrity, thereby affect-
ing downstream analysis such as GWAS [5]. Genotype imputation uses the
association between genetic variations to predict those missing or low-quality
genotypes [6]. It is a foundational step of gene analysis, with a wide range of
practical applications. It is now widely used in GWAS to find new risk alleles,
obtain high-resolution views in fine positioning to increase the possibility of
identifying causal variants and integrate Meta-analysis of research on differ-
ent platforms. Currently, the state-of-the-art plaintext genotype imputation
methods include IMPUTE2 [7], Minimac3 [8], and Beagle [9] and fastPHASE
[10]. IMPUTE2 uses sophisticated recombination maps and dense genotype
reference panels to impute missing genotypes in the research dataset. Mini-
mac3 divides the genome into contiguous blocks and iterates only the unique
haplotypes in each genome block. It uses a reversible mapping function to
reconstruct the state space used by IMPUTE2 accurately. Beagle uses the Li
and Stephens haplotype frequency models with highly reduced model state
space to interpolate the phased haplotypes. FastPHASE is a flexible method
that allows the ”blocky” pattern of linkage disequilibrium (LD), and the
LD gradually decreases with distance. These methods are applied based on
plaintext gene datasets to impute missing genotypes and cannot secure the
gene data. The genetic data is sensitive, where a sequence larger than 75
single-nucleotide polymorphisms (SNPs) array can confirm an individual’s
identification [11]. A genetic sequence can reveal human ancestry, relatives,
and disease type, which involves privacy concerns.

Nowadays, the pressure brought by the increasing genetic data and the
huge amount of imputation computations has made people turn their atten-
tion to convenient cloud service providers [12] for imputation. However, the
genetic data is stored in plaintext in the cloud, and anyone who has access to
the cloud platform may obtain these plaintext data. Even the semi-trusted
cloud platforms may steal the users’ genetic data motivated by benefits. The
privacy concerns prohibit people from trusting the third-party platform to
process their genetic data [13, 14].

The homomorphic encryption (HE) [15, 16] allows computing over en-
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crypted data directly without revealing data. It provides mathematically
provable security guarantees for protecting genotype data while performing
imputations in an untrusted cloud platform. We note that other cryptologies
like multiparty computation (MPC) [17, 18] require interaction between mul-
tiple parties that hold the data, and the cloud platform performs imputation
operations. Although the functional performance of MPC-based methods is
impressive, they may cause problems such as network latency and high band-
width usage. Thus, we rely on the HE scheme to secure the gene data and
perform the imputation evaluation over encrypted genetic data. However, the
HE scheme limits the computational circuit depth or requires time-consuming
bootstrapping operations to refresh the ciphertext, making the HE-based ap-
plications computationally inefficient. The main challenge of the HE-based
genotype imputation is to achieve efficient and accurate genotype imputation
under the premise of ensuring security.

To explore the practical feasibility of the cryptographic methods for geno-
type imputation, IDASH organized the genotype imputation track in iDASH2019
Genomic Privacy Challenges. The participating teams focused on the three
most advanced HE cryptosystems, which are namely Brakerski/Fan-Vercauteren
(BFV) [19], Cheon-KimKim-Song (CKKS) [20], and fast fully homomorphic
encryption over the torus (TFHE) [21]. The highest accuracy of the partici-
pating teams was 95.5% with a 128-bit security level from the HE standard-
ization workshop paper [22]. Since the imputation accuracy of these secure
genotype imputation methods is lower than those of plaintext methods. We
need higher accuracy to improve the downstream analysis, such as GWAS.

In this work, we propose a fast and secure genotype imputation [23] infer-
ence model based on the TFHE [21]. The main contributions are as follows:

• Based on the iDASH Secure Genome Analysis Challenge 2019 dataset,
we provided several secure genotype imputation models of a single vari-
ant, exhibiting the connection between the tag and target variants.
Simulation results indicate that the accuracy for a single genotype of a
variant of 1000 individuals reached 98.6%.

• We used an LWE-based linear regression model without bootstrapping
or key-switching operation, improving genotype imputation speed. Our
experimental results show that the imputation time for 1000 individu-
als’ single genotype is approximately 0.269 seconds.

• We found that the rounding error in the imputation vanished the noise
brought by HE encryption. The obtained secure genotype imputation
model has a similar performance to the original plaintext model.
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We trained the model with genetic data in plaintext. The genotypes
of tag variants used for the inference model are encrypted into ciphertext.
We set the message space of ciphertext in advance by calculating the max-
imum multi-sum between the trained parameters and genotype value. The
homomorphic evaluation is based on the security of the LWE problem. The
encryption phase uses the LWE security concept and there did not use boot-
strapping operation and key-switching key. The key distribution will not
cause any time costs. There is no additional overhead (except for linearly
increasing input size) to extend the interpolation calculation. The rounding
parameters will not affect homomorphic computation on the ciphertext and
the security level.

The remaining parts of the paper are as follows. Section 2 gives the related
work of secure genotype imputation. Section 3 describes the model’s training
process on the plaintext and the implementation of secure inference models.
Section 4 introduces our experiments. The conclusion and expectations are
provided in the last section.

2. Related Work

In 1978, Rivest [24] first proposed the HE scheme’s assumption, which
allowed various calculations over encrypted data. Nowadays, HE schemes
are generally classified into three types: Partially Homomorphic Encryp-
tion (PHE) [25], Somewhat Homomorphic Encryption (SWHE) [26, 27, 28],
and Fully Homomorphic Encryption (FHE) [29, 21] according to calculation
depth and capacity. PHE can allow homomorphic multiplications or homo-
morphic additions with limited calculation depth. SWHE supports homo-
morphic multiplications and additions with limited calculation depth. FHE
supports the arbitrary depth of any calculations on the ciphertext by using
bootstrapping. The bootstrapping operation [29, 30, 31] can refresh cipher-
text and reduce noise in ciphertext, which allows FHE to achieve the arbitrary
depths of circuits and maintain the decryption’s correctness.

The current popular HE schemes include BFV [26, 19], CKKS [20], BGV
[28] and TFHE. These schemes are implemented based on the ring learning
with error (R-LWE) problem [32], while TFHE is based on LWE and GSW
[33] problems. Both BFV and BGV allow homomorphic calculations on
vectors of finite field elements, and the CKKS scheme allows approximate
homomorphic calculations on real or complex numbers.

In the era of cloud computing and machine learning, HE provides a so-
lution to protect users’ outsourced data [34, 35, 36, 37]. The user uploads
encrypted data to the cloud service without decryption, and the cloud service
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directly performs homomorphic addition and multiplication on the cipher-
text. The other computing on ciphertext can be constructed using homo-
morphic addition and multiplication.

HE&Genotype imputation. Advances in information technology and
bioinformation have made people and institutions use third-party cloud plat-
forms to store and process data, such as online health status monitoring [38],
disease diagnosis [39, 40], and genotype imputation [41, 42]. However, once
users upload their data in plaintext to the third-party platform, they will
lose control of their sensitive data. Anyone who can access the third-party
platform can steal users’ genetic data.

Kocabas [38] proposed a secure health monitoring system (real-time mon-
itoring of heartbeat frequency) with the FHE scheme. When the monitor
system obtained the user’s heartbeat frequency, it encrypted the frequency
data locally using HElib library [43] and uploaded encrypted data to the
cloud platform for analysis. The cloud platform analyzed the encrypted data
and transmitted the encrypted result to the user. Then the user decrypted
it to check the result. In this process, since the secret key was in the users’
hands, the cloud platform could not obtain any information about the user’s
data. Thus the privacy of the user’s health status was guaranteed. Meehan
[39] proposed a secure model using the TFHE library to diagnose whether
users had breast cancer. It guaranteed the privacy and safety of users’ health
status and avoided disease discrimination. Kim etc. [41] proposed to combine
genotype imputation and HE scheme to protect people’s genetic data without
data leakage. The UTMSR team presented a fast and secure linear regression
model based on BFV and CKKS schemes, and the accuracy achieved 95.4%.
EPFL team applied a multinomial logistic model to impute missing geno-
types based on the CKKS scheme homomorphically and got 95.5% accuracy.
The Chimera team presented a TFHE-based logistic regression model, and
the accuracy was 95.1%. The SNU team applied a one-hidden layer neural
network with the CKKS scheme, and the accuracy was 95.0%. The models
only took 380 microseconds to predict the genotype of a variant of 1000 in-
dividuals. They output each type of genotype’s probability to determine the
imputed genotype. Compared with the plaintext models (higher than 97.1%
[41]), the accuracy of the secure models can still be improved.

We propose a secure linear regression inference model with the TFHE
library based on the LWE problem to secure genetic data and efficiently im-
pute the missing SNPs. The inference model is trained with plaintext float
parameters, which are round into integers to avoid high complexity HE eval-
uation on float number operations. We performed detailed experiments on
the time and memory requirements of the HE-based imputation model and
demonstrated the feasibility of large-scale secure imputation. We found com-
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parable performance (without decrease) in imputation accuracy with total
genomic data security benefit. Our experimental results provide evidence
that HE-based methods can perform efficient calculations to analyze massive
genetic data.

Client Cloud

Secure 

Imputation  

Inference

Genetic 

Data

Encrypted 

Result

Decrypt

Training

Encrypt

Figure 1: The overview of our privacy-preserving genotype imputation inference.

3. The Proposed Model

The secure inference model over encrypted data is shown in Figure 1. The
client encrypts genetic data with a secret key and then uploads the encrypted
data to the cloud service provider (CSP) for genotype imputation. CSP
returns the encrypted result to the client after imputation computations.
Even if an untrusted third party steals the encrypted genetic data in the
entire system imputation process, he cannot obtain any information because
he does not have the key. This section will introduce the models in detail,
including data encryption and decryption process in client and model training
and secure imputation inference model in the cloud.

3.1. Preliminaries

This subsection gives the notations, definitions of the LWE problem and
the LWE encryption scheme, and homomorphic computations used in the
paper.

Notation. A vector is denoted by a bold letter and ⟨a, b⟩ denotes the
inner product between two vector a and b. || · ||1 denotes the L1 norm of a
vector, || · ||2 denotes the L2 norm of a vector, and || · ||∞ denotes the infinite
norm of a vector. R denotes the real numbers, Z denotes the integers, and T
is torus R/Z. Furthermore, given a set Q, a

$← Q represents that a is chosen
uniformly and randomly from Q.
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Training Set


0 1 1 ... 0 0
1 2 1 ... 1 1

...
0 0 0 ... 0 0

 Train Models
F = W T

f × I
I Plaintext Imputation

Models

Test Set


[0] [1] [1] ... [0] [0]
[1] [1] [0] ... [1] [1]

...
[0] [1] [1] ... [0] [0]

 Secure Models
[F ] = W T

I × [I]
[I] =
Enc(I)

Imputed Genotypes
Gp = ⌊Dec([F ])⌉

Homomorphism

[F ]

Figure 2: Training and inference on the cloud.

Learning With Errors. Regev [44] introduced the Learning With Er-
rors (LWE) problem in 2005. Let n be a positive integer (n ≥ 1), any vector

s
$← Zn, ϕ be a distribution over R, and the noise e is sampled from distri-

bution ϕ. For any vector s, we define the LWE distribution LWEs,ϕ as (a, b),

where the vector a
$← Tn and b = ⟨s,a⟩+ e.

Regev defined the LWE problem is: for a fixed s
$← Zn, it is hard to

distinguish between LWEs,ϕ and the uniform distribution over Tn+1.
Regev stated that the LWE problem is as asymptotically difficult as the

worst-case lattice problem.

LWE-based encryption. Define a positive integer B related to the
message space. Let m ∈ [−B,B] be an integer message. The torus is split
into 2B + 1 slices, and each slice denotes one possible integer value.

Let n denotes the security parameter, s
$← Zn. ϕ is a Gaussian distribu-

tion.
Enc(m): Return (a, b), with a

$← Tn, and b = ⟨s,a⟩ + m
2B+1

+ e, where
e← ϕ.

Dec(s, (a, b)): Return m = ⌊(b− ⟨s,a⟩)× (2B + 1)⌉.
Homomorphic addition. Suppose two messages m1, m2 ∈ [−B,B]

with a randomly generated secret key s1, a1 and a2 are randomly chosen
from Tn. c1 = Enc(m1), b1 = ⟨s1,a1⟩ + m1

2B+1
+ e1. c2 = Enc(m2), b2 =

⟨s1,a2⟩+ m2

2B+1
+ e2, and we can get c1 + c2 = (a1 + a2, b1 + b2).

Dec(s1, c1 + c2) = ⌊(b1 + b2 − ⟨s1,a1 + a2⟩)× (2B + 1)⌉
= ⌊(m1 +m2) + (e1 + e2)× (2B + 1)⌉

Suppose m1 + m2 ∈ [−B,B], and the noise (e1 + e2) × (2B + 1) is
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within the controllable range, and the ciphertext is expanded in the ci-
phertext space after the homomorphic addition, then the decryption of ho-
momorphic addition result will be correct with overwhelming probability:
Dec(s1, (c1 + c2)) = m1 +m2. Therefore, addition over ciphertext is homo-
morphic.

Homomorphic multiplication. Homomorphic multiplication supports
the calculation between ciphertext and an integer plaintext. Let k be an
integer constant in plaintext, the message m ∈ [−B,B], a is randomly cho-
sen from Tn, c = Enc(m), b = ⟨s,a⟩ + m

2B+1
+ e. The multiplication over

ciphertext and plaintext and decryption processes are as follows.

k × c = k × (a, b) = (k × a, k × b)

Dec(s, k × c) = ⌊(k × b− ⟨s, k × a⟩)× (2B + 1)⌉
= ⌊k ×m+ k × e× (2B + 1)⌉

If k×m ∈ [−B,B] and the noise k×e×(2B+1) is within the controllable
range, and the expanded ciphertext size is within the ciphertext space after
the homomorphic multiplications, the decryption of multiplication will suc-
ceed with overwhelming probability: Dec(s, k × c) = k ×m. Therefore, we
believe that the multiplication over ciphertext and plaintext is homomorphic.

Here is a toy example where insecure parameters are used for straightfor-
ward explanation. Let’s choose n = 4, B = 12,m = 5 and a = (0.1, 0, 0.1, 0), s =
(0, 1, 0, 1), e = 0.001. To encrypt, we need to compute b = ⟨s,a⟩+ m

2B+1
+e =

0.3001, thus the ciphertext is (a, b) = (0.1, 0, 0, ., 0, 0.3001). We can use s to
decrypt and then m = ⌊(b− ⟨s,a⟩)× (2B + 1)⌉ = ⌊5.0025⌉ = 5 can be
obtained.

3.2. Client

Clients are limited by high computation capacity and genotype imputa-
tion technology; thus, they are willing to upload genetic data to a third-party
platform for convenient imputation. Before clients send their data to CSP,
they first encrypt the genetic data with a secret key, and CSP will impute
missing genotypes over these encrypted data.

We use the subsets of genetic sequences [45] to reduce the cost of large-
scale genotype imputation and enhance the power of genetic data analysis.
The genotypes in the subset are called tag variants, and we study the rela-
tionship between these tag variants to impute missing or low-quality variant
genotypes (called target variants).
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Suppose user’s genetic data in plaintext is I (n× 1), each genotype value
Ii ∈ I is a discrete value which is defined as 0, 1, or 2. 0 denotes homozy-
gous reference genotype, 1 denotes heterozygous genotype, and 2 indicates
homozygous alternate genotype. The genetic data I is encrypted by Enc(·)
operation into encrypted data [I], and then client inputs [I] into the secure
imputation inference model.

I : (1, 2, 0, 0..., 2)
Enc(·)−−−→ [I]([1], [2], [0], [0], ..., [2]) (1)

3.3. Cloud Service Provider

The cloud service provider (CSP) uses the linear correlation between ge-
netic data to train and get the model’s parameters by the public genomic
dataset such as 1000 genomic project [46]. CSP takes the client’s encrypted
genetic data as the input of the secure inference model and returns the en-
crypted imputed result to the client.

CSP uses the forward propagation and backpropagation [47] to train the
model on a public genetic dataset. The forward propagation calculates each
neuron’s output, and the backpropagation updates and optimizes the weight
parameters. The training process usually involves thousands of iterations.
We use stochastic gradient descent, and the parameters will be optimized
after a new sample is trained. CSP trains the model on the public genetic
dataset and imputes missing SNPs over the encrypted data. Figure 2 illus-
trated the process of training and inference.

Inference

Training 1 2 ? 0 0 ...

[1] [2] ? [0] [0] ...

F = W T
f × I

[F ] = W T
I × [I]

Encryption

I

[I]

Linear regression

Figure 3: Linear regression model. The CSP trains the model on the plaintext, rounds
the model’s weight, then constructs the ciphertext model to accept input ciphertexts from
the client.

3.3.1. Model Training

As shown in the Figure 3, the linear regression model’s input is I (n×1),
and Ii ∈ {0, 1, 2}, while its output is a float vector F (m × 1). Before the
model starts training, weight parametersWf (n×m) are randomly initialized
as float numbers between (0, 1). In the forward propagation, F = W T

f × I.
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During the backpropagation process, we use the mean-square error function
as the cost function J , where F ′ denotes the target genotype, F is the model’s
output.

J =
1

2
(F − F ′)2 (2)

The stochastic gradient descent algorithm is performed according to Eq.
3, where α is the learning rate and Wf represents the weight parameters.

Wf = Wf − α
∂J

∂Wf

(3)

The parameters of the model are iterative optimized until J convergence
to a minimal value or the iteration number reaches the limitation. After
training the model, CSP constructs a homomorphic linear regression infer-
ence model based on the trained parameters.

3.3.2. Secure Inference Model

As shown in Figure 2, the inference model takes the encrypted genetic
data [I] (n× 1) as the input. Since the trained parameters on plaintext are
float and homomorphic multiplication requires the plaintext to be an integer,
we convertWf into integerWI . We keep two numbers after the decimal point
for the Wf and scale them by 100 times. We use integers to approximate
the floating-point weight, without affecting the encrypted genetic data and
homomorphic computation on the ciphertext, as seen from the homomorphic
multiplication formula in section 3. Thus, the conversion will not reduce the
complexity of the LWE-based homomorphic computation and security level.

WI = ⌊Wf × 100⌉ (4)

[F ] = W T
I × [I] (5)

Where i ∈ [1, n] is a integer, and [F ] is encrypted imputation result.
The inference of missing SNPs is shown as Eq. 5. After CSP inferences the
missing SNPs, it returns back the encrypted imputation result [F ] to the
client. The client decrypts [F ] with the secret key, then decode by scaling it
by 1/100. The decoded results are the predicted genotypes of missing SNPs.

To correctly evaluate the model’s multi-sum, we need to include all pos-
sible values of W T

I × I in the message space B [48], W T
I × I ∈ [−B,B].

Otherwise, the decryption of the multi-sum will fail. CSP first chooses mod-
els to train and obtains optimized model parameters WI after training. The
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maximum of Ii is 2, and CSP can get the possible maximum multi-sum of
the model: ||WI ||1 × 2. As long as B satisfies the following formula, the
multi-sum of the model will be in the range of [−B,B], and homomorphic
decryption will succeed correctly with an overwhelming possibility.

B ≥ ||WI ||1 × 2 (6)

3.4. Analysis of Noise

With homomorphic addition and multiplication calculation, the cipher-
text’s noise will expand. The expanded noise will result in decryption failure
if calculation times are not limited. Thus, we should limit calculation times
by reducing model’s input units and the size of ||WI ||2. The standard devia-
tion is used to evaluate whether ciphertext’s noise is out of bounds, which is
σ2 in a fresh ciphertext. With every multiplication, the standard deviation
gets larger by the square of the multiplier. When a ciphertext is multiplied
by an integer p, the noise’s standard deviation of obtained ciphertext will
be expanded by p2 times. To decrypt correctly (noise will not overflow), the
following inequation needs to be satisfied:

||WI ||22 × σ2 <
1

4B
(7)

3.5. Analysis of Parameter Rounding

Theorem 1. Let Wξ = Wf −WI/100 be difference of between the float
and integer weight parameters, Ff = W T

f × I is the original model’s output,
FI = W T

I × I is the output of model with integer weights, Dec([F ]) denotes
the decrypted result of secure inference model’s output. Since the prediction
result on the plaintext is close to an integer, the noise generated by rounding
the weight parameter is very small and will not affect the prediction accuracy.

Proof. WI takes the accuracy of Wf ’s two decimal places, the values in Wξ:
W i

ξ < 5× 10−3.

W T
f × I − (W T

I × I)/100

= (W T
I /100 +W T

ξ )× I − (W T
I × I)/100

= W T
ξ × I

(8)

W T
f × I −Dec([F ])/100

= (W T
I /100 +W T

ξ )× I−⌊
W T

I × I +W T
I × e× (2B + 1)

⌉
/100

= W T
ξ × I

(9)
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Eq. 8 represents the output difference between models on the plaintext.
From the Eq. 9, We can find that the noise in the encryption is taken from a
Gaussian sample centered on the input message, with the standard deviation
sd. It will not affect decryption. At the same time, since the output value on
the plaintext is close to an integer and the Wξ < 5×10−3 is small, which will
not affect the imputation accuracy. Thus, even though the secure model’s
decrypted result contains noise, it does not affect the imputation result.

4. Experiments

Our models are implemented in C++. The models are run on a PC with
i7-6700 CPU and 8G RAM. This section describes the experimental dataset,
parameter settings, imputation accuracy, resource usage, and time consump-
tion. The code address: https://github.com/tfhe-genotype-imputation/
HE_genotype.

4.1. Dataset

The simulation datasets include two datasets that come from the iDASH
Secure Genome Analysis Challenge 2019, containing 2504 individuals’ genetic
data.

As shown in Table 1, in the ”sorted tag SNPs 1k genotyp- es” dataset, it
includes each individual’s 9764 SNPs, and the distance between two nearby
genotypes is 1k. ”sorted tag SNPs 1k genotypes” dataset includes each in-
dividual’s 1045 SNPs, and the distance is 10k. The 500 target SNPs are the
missing SNPs to be imputed. In experiments, 1500 individuals are used as
the training set and 1004 as the test set (3:2). The dataset can be found in
the following URL1.

Table 1: Dataset

Distance Dataset Tag SNPs Target SNPs
1k sorted tag SNPs 1k genotypes 9764

500
10k sorted tag SNPs 10k genotypes 1045

4.2. Parameters

The homomorphic evaluation is based on the security of the LWE prob-
lem. The setting followed the notations of [21]. The encryption phase uses
LWE security notions with no bootstrapping operations and no key-switching

1http://www.humangenomeprivacy.org/2019/competition-tasks.html

12

https://github.com/tfhe-genotype-imputation/HE_genotype
https://github.com/tfhe-genotype-imputation/HE_genotype


key. We estimated the security level from the attack models by the LWE
estimator from [49] that computes the computational costs of state-of-art
(R)LWE attack algorithms. We employed the LWE estimator to estimate
hardness for the standard deviation sd(2−25) and dimension n(1024) and
get an estimated 130-bits of security. The parameters related to the LWE
estimator are the following:

- Ciphertext dimension: n = 1024;
- Noise standard deviation: sd = pow(2.,−25);
- Noise rate: alpha = sqrt(2 ∗ pi) ∗ stdev;
- Compatibility: q = pow(2., 32);
- The attacker can use any number of samples: m = oo

Inspired by the methods in [41], we conducted experiments on models
of increasing input sizes. In the dataset of the different distances between
variants, the models include 10, 30, and 70 tag SNPs for a single target SNP,
and we represent the models as ”10→ 1”, ”30→ 1”, and ”70→ 1” models.

Finally, we calculated the message space: B = ||W T
I ||1 × 2, WI denotes

weight parameters of each model. In the experiment, we set B = 700, which
is slightly smaller than the calculated value, and we found that it did not
affect the results of the homomorphic evaluation.

4.3. Imputation Accuracy

As shown in Table 2, we give the accuracy of models based on the
HE scheme. Our secure linear regression reference model is similar to the
UTMSR’s model in [41], logistic regression models in CHIMERA and EPFL.
But we select the most appropriate nearby genotypes for each missing gene.
Experimental results show that our ”30→1” model is about 3% higher than
their model on accuracy. Unlike one-hidden layer neural network in SNU, we
applied a more straightforward structure, and the results show our model is
1%-3% higher than theirs.

We construct three models on two datasets to illustrate our models’ per-
formance under different input sizes and security levels. We refer to the
original models with float weights as float plaintext models, the model with
integer weights as integer plaintext models, and the models on ciphertext as
secure inference models for convenience.

In Table 3 and Table 4, the second value refers to the accuracy of float
plaintext models, and the third value refers to the integer plaintext models’
accuracy, the last value refers to the accuracy gap between float plaintext
models and secure inference models. The tables show that parameter round-
ing operation does affect the imputation accuracy. On the 1k dataset, the
accuracy of the models with integer parameters is about 0.1% lower than
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Table 2: Imputation accuracy of homomorphic models

Models Size Accuracy
UTMSR[41] 32→1 95.40%
EPFL[41] - 95.50%

CHIMERA[41] 45→1 95.10%
SNU[41] 24→1 95.00%

Ours
10→1 96.66%
30→1 98.55%
70→1 98.60%

float plaintext models. On the 10k dataset, the accuracy difference is about
0.2%. As seen from Table 3 and Table 4, we can find that the accuracy of the
secure inference model is close to that of the integer plaintext model. There
is a small improvement because some results of the plaintext model are close
to the middle of the label, which becomes correct after adding the noise of
the rounding weights.

Table 3: Test accuracy on 1k dataset

Input→Output Float Integer Security (bits) Ciphertext Gap

10→1 96.74% 96.65%
80 96.65% 0.09%
130 96.65% 0.09%

30→1 98.57% 98.55%
80 98.55% 0.02%
130 98.55% 0.02%

70→1 98.65% 98.60%
80 98.60% 0.05%
130 98.60% 0.05%

Table 4: Test accuracy on 10k dataset

Input→Output Float Integer Security (bits) Ciphertext Gap

10→1 87.17% 86.87%
80 86.87% 0.30%
130 86.87% 0.30%

30→1 88.48% 88.29%
80 88.29% 0.19%
130 88.29% 0.19%

70→1 88.40% 88.52%
80 88.52% 0.12%
130 88.52% 0.12%

On the 1k dataset, the secure model’s imputation accuracy for a single
genotype achieved 98.6%. The ”70→1” homomorphic model maintained the
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highest accuracy and is slightly 0.04% higher than the ”30→1” homomorphic
model. Furthermore, on the 10k dataset, the ”70→1” homomorphic model
is slightly higher than the ”30→1” homomorphic model. The experimen-
tal results show that the number of nearby genotypes influences imputation
accuracy. The more nearby genotypes (larger input size), the higher the
accuracy.

Under the same model size, the imputation accuracy of the model with a
nearby genotype distance of 1k is almost 10% higher than that of the model
with 10k. The experimental results show that the accuracy of the inference
model is the same under the security level of 130 bits and 80 bits.

4.4. Resource Usage

With 80 bits or 130 bits security level, each genotype (0, 1, or 2) in the
clear takes 2 bits, and each LWE ciphertext takes 8 bytes (64 bits). Therefore,
the storage of ciphertext is 32 times that of plaintext.

As shown in Table 5, the memory usage of the proposed scheme is larger
than that in the [41]. Our scheme required less than 0.39 gigabytes.

Table 5: Memory Usage

Models Size Memory (gigabytes)
UTMSR 32→1 0.03

CHIMERA 45→1 0.02
SNU 24→1 0.13
EPFL - 0.06

Ours
10→1 0.26
30→1 0.30
70→1 0.39

4.5. Time Consumption

We divided homomorphic evaluation into three processes: encryption,
homomorphic calculation, and decryption. Table 6 refers to each process’s
time consumption per 1000 individuals with a different security level. We can
see from the table that the encryption operation consumes the most time,
accounting for more than 95% of the total time. The whole homomorphic
calculation did not use bootstrapping operations and key-switching keys, so
the homomorphic calculation only spent about 5% of the total time. The
decryption step took the least time. The experimental results also show that
each step’s time consumption has a linear relationship with the model’s input
size.
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In addition, Table 6 shows that the secure inference model with 80 bits
security level consumes nearly 25% less time than the model with 130 bits
security level.

Table 6: Time consumption of each process.

Security (bits) Input → Output Enc(s) Calculation(s) Dec(s)
80

10→ 1
0.1941 0.00237 0.00069

130 0.2438 0.00298 0.00075
80

30→ 1
0.5788 0.00619 0.00069

130 0.7323 0.0078 0.00076
80

70→ 1
1.3583 0.0139 0.00072

130 1.6967 0.0175 0.00076

Table 7 describes the total time consumption of homomorphic models
with the security level of 130 bits. The test dataset has 1004 individuals.
In the ”10 → 1” model, the homomorphic evaluation time for each variant
of 1004 individuals is approximately 0.269 seconds, the ”30 → 1” model is
about 0.78 seconds per variant per 1004 individuals, and the ”70→ 1” model
is approximately 1.71 seconds. The experimental results show that the secure
linear model with 30 tag SNPs as the model’s input for a single genotype
shows the most balanced performance in terms of timing and imputation
accuracy.

Table 7: Total time consumption.

Input→ Output Total Time (s) Time (ms / variant)
10 → 1 0.269 0.268
30 → 1 0.78 0.777
70 → 1 1.71 1.708

Since there are 1004 individuals in the test dataset with the same cal-
culation in homomorphic linear regression, the genes with the same SNP’s
identifier of different individuals can be packaged into one ciphertext, which
can calculate repeated operations in parallel. As a result, the time consump-
tion will be significantly reduced. For the prediction of the same SNP of
1004 individuals in the ”30-1” model, the input changed from 1004×30 LWE
ciphertexts to 30 TLWE ciphertexts, and the output with 1004 LWE cipher-
texts are packaged in one TLWE ciphertext. Table VIII shows that packaging
multiple inputs into a single ciphertext can reduce the time consumption of
our model nearly 300 times, and the accuracy remains the same.
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Table 8: Average time consumption of each process for each SNP after data packaging.

Security (bits) Input → Output Enc(ms) Calculation(ms) Dec(ms)
80

10→ 1
0.507 0.01 0.011

130 0.513 0.011 0.012
80

30→ 1
1.578 0.031 0.011

130 1.6 0.04 0.012
80

70→ 1
3.43 0.075 0.012

130 3.47 0.077 0.012

5. Conclusion

In this work, we propose a secure and fast linear regression inference
model to impute the missing genotypes. Homomorphic encryption is time-
consuming and only allows simple addition or binary gates on the ciphertext.
Thus we design the secure inference model carefully to maintain high impu-
tation accuracy and efficiency. We round the trained weights to integers and
reduce the time consumption of homomorphic evaluation without affecting
the security level. The secure genotype imputation inference model reduces
the cost of large-scale gene sequencing and guarantees the safety of genes.
If new variants must be imputed, training and homomorphic imputation are
performed independently, with fast training and prediction. Since our basic
model is a simple linear regression model, we consider using neural network
models and activation functions to improve accuracy in the future. We also
consider using ciphertext packaging technology to reduce data encryption
time.
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