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Abstract—Homomorphic encryption provides a way to perform
deep learning over encrypted data and permits the user to
encrypt the data before uploading, leaving the control of data on
the user side. However, operations on encrypted data based on ho-
momorphic encryption are time-consuming, especially in a deep
convolutional neural network (CNN), which incorporates a large
number of layers and operations. To speed up deep learning on
encrypted data, we binarized the input data and weights of CNN
model, while operations including the addition and multiplication
in CNN become bit-wise operations. Therefore, the homomorphic
evaluation of CNN can be performed in the binary field in a
highly efficient way. We also construct an efficient pooling layer
by designing circuits to perform comparison operations on the
ciphertext. Simulation results clearly show that the convolution
operation of the proposed model is at least 6.3 times faster than
that of existing schemes. Last, our model exhibits no privacy
leakage associated with the data being processed.

Index Terms—Privacy-preserving, Deep learning, Fully ho-
momorphic encryption, Convolutional neural network,Privacy
computing

I. INTRODUCTION

With the development of information technology, the data

produced by users is proliferating. While the requirements for

data processing increase, the rapid development of machine

learning has empowered the large-scale processing and analy-

sis of big data. Benefited from cloud computing and network

techniques, users tend to upload their personal data to servers

accessing machine learning services, such as face recognition

[1], [2], gene diagnosis [3], and financial review [4]. At the

same time, a series of privacy concerns arise when the per-

sonal data is related to Personal Identifiable Information (PII)

introducing the challenge of having to use the data but without

losing control of it. Homomorphic encryption [5], [6] allows

operations on encrypted data providing a solution to this chal-

lenge. However, the high time consumption of homomorphic

evaluation on encrypted data remains a challenge, especially

for deep learning [7]. The convolutional neural network (CNN)

is widely used in image classification [8], [9], natural language

processing [10], [11] and so on. Meehan [12] proposed a

novel and privacy-preserving CNN model with hybrid fully

homomorphic encryption (HFHE) allowing servers operating

on encrypted data. Although Meehan’s model improves the

speed of homomorphic calculations, it still needs 55 hours to

classify one image. Hesamifard et al. [13] proposed a deep

neural network on encrypted data named CryptoDL. They use

low degree polynomials as the activation functions in CNN

inference with a little precision sacrificing.

Furthermore, the employed Leveled Homomorphic Encryp-

tion [14] (LHE) limited the layers and capacity of CNN, since

the supported operations in leveled homomorphic encryption

are bound. By redefining the TFHE library [15], Bourse

et al. [16] proposed a deep discretized neural network that

significantly improves the classification speed over encrypted

data. In this model, only neuron calculation on discretized

value is performed on the server-side, leaving some operations

on the user side. Moreover, the dimension reduction function,

like the pooling layer, is not implemented, which limits the

capacity of the CNN.

Since real and discretized values are used in neural net-

works, all above methods need to binarize the data and weights

or employ real numbers supported by homomorphic encryp-

tion, which is usually time-consuming. In this paper, instead of

using real-valued CNN, we employ a binarized CNN network

[17] evaluated directly by bit-wise supported homomorphic

encryption, implementing secure CNN inferences to protect

the security of users’ data.

We leave the network weights as plaintext, while the data

is encrypted to protect users’ privacy. Since the weights are

known to the service provider, we construct a hybrid homo-

morphic evaluation that can finish bit-wise operations between

plaintext weights and ciphertext that do not need bootstrapping

operations. Thus, the number of time-consuming bootstrapping

operations can be dramatically reduced. Benefited from the

binarized implementation, the speed of convolution operation

is greatly improved, and storage cost for the model decreases.

Compared to the hybrid convolution in [12] under fully

homomorphic encryption (FHE), the convolution operation is

6.3 times faster.
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Fig. 1. The overview of our privacy-preserving deep learning system.

Moreover, we use the homomorphic supported bit-wise

operation to realize the comparison operations, which can

allow the hybrid homomorphic operations. Based on the

comparison operation on ciphertext, we construct a novel max-

pooling layer to reduce the data dimension. Especially, we

use hybrid homomorphic bit-wise operations to construct the

ReLU function [18] on bit-level calculation.

To validate the efficiency of our approach, we construct

a binarized perceptron model whose weights and input are

binary value under the hybrid homomorphic encryption. We

run the binarized perceptron model on a breast cancer dataset.

Simulation results show that our model is 3.6× faster than that

of Meehan’s perception [12] with the same accuracy.

As shown in Fig. 1, our model can be applied to a privacy-

preserving deep learning system consisting of two parts: (1)

Service Provider (SP): The binarized CNN model is trained

and stored on SP which can support homomorphic operations.

(2) Client: Users perform encryption and decryption. The

encrypted data is being uploaded to SP and after it is processed

by the CNN inference in the cloud, the SP will send the

encrypted result back to the client. In this system, the only

client who has the secret key can decrypt the data, and the

data is always kept encrypted preventing to large extend any

data leakage.

The rest of this paper is organized as follows. In section

II, the related work about homomorphic encryption is summa-

rized. In section III, we give the CNN inferences on encrypted

data. The experimental results and analysis will be given in

section IV, respectively. We conclude our paper in section V.

II. RELATED WORK

Traditional encryption methods do not allow data to be ma-

nipulated in the form of ciphertext. In 1987, Rivest proposed

the concept of privacy homomorphism in [19]. Despite this,

homomorphic encryption had not been widely used because of

the noise growth in homomorphic computing and high com-

plexity. Gentry proposed the concept of FHE and provided the

bootstrapping operation to reduce noise from ciphertext [5],

which is a milestone in the field of homomorphic encryption.

Although FHE permits unlimited operations on encrypted

data, the bootstrapping operation has high complexity. The

time cost of bootstrapping is still a challenge for FHE used in

practical applications. Many scholars try to solve this problem.

Recently, benefited from the contribution of scholars in ho-

momorphic encryption, a lot of friendly used implementations

have been open-sourced.

The popular open-source named HElib [20] is an implemen-

tation of the Brakerski-Gentry-Vaikuntanathan (BGV) scheme

[14] which was based on learning with error (LWE) and ring-

LWE problems. HElib offers the addition and multiplication

operations over encrypted data. To speed up the calculation

in HElib, Halevi [21] proposed to use faster linear transfor-

mations to reduce the time of bootstrapping operation. The

algorithm for linear transformations results in a 6× speedup

bootstrapping.

Ducas provided a faster homomorphic encryption scheme

named FHEW library [22], which homomorphically performs

simple bit operations and bootstrapping. Compare with HElib,

FHEW can reduce bootstrapping time cost to less than 0.5

seconds. Besides, FHEW also offers NAND operation for

binary numbers. In 2017, Roy [23] realized homomorphic

evaluations of arbitrary depth with a re-encryption box, which

takes 0.43ms to refresh one ciphertext for reducing noise under

the FV homomorphic encryption scheme [24].

Based on FHEW, Chillotti et al. proposed a formalization

of LWE [25] over the real torus T and TFHE [15] with

a low latency bootstrapping based on the LWE and GSW

[26] schemes. TFHE generates the secret key s ∈ Z
n. The

message m ∈ {0, 1} is the plaintext. It chooses a random

vector a from T
n and a random noise e from Gaussian

distribution φ, then calculates b = [a·s+m+ e]1. Then

message m is converted into a ciphertext vector c = (a, b).
In TFHE, the bit-wise operations (such as AND, XNOR) on

encrypted bits are evaluated by using a linear combination in

the bootstrapping of TFHE. The linear combination outputs a

ciphertext c′ = (a′, b′) which ensures that the ciphertext noise

is within the allowable range. Based on TFHE, Meehan et al.
[12] proposed a machine learning model to permit classifica-

tion on ciphertext with plaintext weights. They used binary

NOT gate which doesn’t require bootstrapping to construct

hybrid bit-wise operation and proposed a hybrid FHE scheme

(HFHE). By implementing hybrid bit-wise operations, they

can realize addition and multiplication between ciphertext and

plaintext at the bit level. Besides, they created a privacy-

preserving CNN model whose weights are plaintext and input

data is ciphertext. Since HFHE reduced numerous unnecessary

bootstrapping operations, the computation speed of addition

and multiplication are improved significantly.

Based on these homomorphic encryption schemes, scholars

try to develop a security deep learning model. Based on HElib,

Hesamifard, et al. [13] proposed a technique, named Cryp-

toDL, to construct privacy-preserving deep neural networks.

They used low degree polynomials to replace the activation

function in CNN, which is trained with approximation polyno-

mials on the plaintext. The evaluation accuracy on the MNIST

dataset can reach 99.52%.

By redefining TFHE library [27], Bourse [16] proposed

deep discretized neural networks which greatly improved

the classification speed over encrypted data. They increased

the message space and sign computation in homomorphic

evaluation. Unlike CryptoDL, their model is constructed by

a neuron calculation. The bootstrapping is used in neurons
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to reduce ciphertext noise. After input data is processed

by homomorphic neuron calculation, encrypted output data

is converted into {1,−1}. By using such discretized neural

networks, they classified encrypted images from the MNIST

dataset with an accuracy 96%, and it only costs 1.7s per image.

Since homomorphic operations over ciphertext and boot-

strapping are time-consuming, it is a challenge for the practical

application of the privacy protection models. Moreover, when

the deep learning model becomes more complicated, the time

cost of privacy-preserving deep learning model is extremely

high, and the storage cost of the model is also enormous.

In this paper, we propose a binarized CNN inference over

encrypted data with sacrificing a minor degree of accuracy

to accelerate the deep CNN and reduce complexity. Since

the input and weights of our model are binarized, it is

more friendly with TFHE, which is designed for bit-wise

operations. Since we leave the model weights as plaintext, we

can also construct the hybrid bit-wise operations to avoid time-

consuming bootstrapping. We also constructed an efficient

pooling layer by designing circuits to perform comparison

operations on the ciphertext. Therefore, the speed of the

privacy-preserving CNN model can be accelerated and the

storage cost can be reduced.

III. THE PROPOSED MODEL

In this paper, we propose a binarized CNN inference model

on encrypted data that binarizes input and model weights.

Besides, we use bit-wise operations to construct an efficient

ciphertext comparison calculation. The proposed model is con-

structed by the Binarized Convolutional Layer, Max Pooling

Layer, and Fully Connection Layer. We also implement hybrid

homomorphic bit-wise operations to construct lossless ReLU

function as the activation function.

The structure of the deep binarized CNN model is shown

in Fig. 2. Two preprocessings including Batchnorm and

Binactive with Encrypt are performed in the client-side.

Batchnorm is a regularization operation in the binarized CNN,

which can help improve model accuracy. Binactive operation

is used to binarize the original data to improve the speed of

arithmetic operations in CNN model. We implement Encrypt
by fast FHE over the Torus to encrypt user’s privacy data.

After that, the user uploads the encrypted data to SP. When

the encrypted data is performed in binarized CNN inference,

SP returns the encrypted result to the client without privacy

leakage.

Fig. 2. The structure of our binarized CNN inference.

A. Client

Suppose the input data is an image matrix, and the pixel

is a gray value in the range of 0 and 255. Two preprocess-

ings including Batchnorm and Binactive with Encrypt are

performed on the input image in the client.

Batchnorm: CNN usually needs a regularization on the

input image to improve the performance [28]. This low com-

plexity step can be performed on the client, which can reduce

ciphertext calculation in the cloud. For each pixel value m
in the image, its normalized value n=γ×Φ(m)+β, where β
and γ are two trained weights in batch normalization layer.

Here we define Φ(x) is a normal distribution. By performing

Batchnorm on the original image, we can get float matrix

I ∈ R
win×hin , where (win, hin) represent the input width

and height. This matrix I is the input of the Binactive.

Binactive: In this step, we convert I into float matrix K
and sign matrix sign(I). According to the sign of input I , we

can get the binary sign matrix sign(I), where binary values 0

and 1 represent negative sign and positive sign, respectively.

For 0≤ i ≤ win and 0≤ j ≤ hin, we compute a matrix A,

where Aij=|Iij |. Then we convolve A with a 2D filter k ∈
R

wk×hk , where wk, hk represents filter’s weight and height,

each value in k is 1
wk×hk

. Float matrix K = A ∗ k, where ∗
is convolution operation.

Encrypt: we define Encrypt operation Enc(·) to encrypt

message m as a TLWE ciphertext(TLWE is a generalization

of LWE and Ring-LWE [15]): generate the secret key s,

random vector a and noise e, calculate b=[a·s+m+ e]1 and

ciphertext c=(a,b). Every element m ∈ sign(I) belongs to

{0, 1}. For 0≤ i ≤ win and 0≤ j ≤ hin, we perform

Enc(s,mij)→ c. After Encrypt operation we get encrypted

matrix [sign(I)] for subsequent calculations.

Since the element in matrix K is float, we can’t encrypt the

matrix directly. We need to quantize all the values of matrix

K and get the ten most important bits of the values. After

this step, values in float matrix K are converted into 10-bit

precision. Then we use Enc(·) to encrypt matrix K and get

encrypted matrix [K].

After performing Batchnorm, Binactive, and Encrypt op-

erations on the input data, the user can get ciphertext [K] and

[sign(I)] and uploads it to SP as the input of binarized CNN

model.

B. Service Provider

SP trains its model on unencrypted data. After the model

is trained, the SP uses the users’ encrypted data to perform

binarized CNN inference, which is constructed by Binarized

Convolutional Layer, Max Pooling Layer, and Fully Connec-

tion Layer.

The input data I and model’s weights W are con-

verted into binary values, respectively. We implement Bi-
naryForward(·) from [17] for forward propagation, whose

weights and input are binary values. Then, we get result

Ŷ =BinaryForward(I,W ). In back propagation, with cost

function C(Ŷ , Y ) and the gradient descent method, we can

162

Authorized licensed use limited to: University of Greenwich. Downloaded on September 30,2020 at 21:03:43 UTC from IEEE Xplore.  Restrictions apply. 



optimize the binarized CNN model. Then the optimized weight

W will be used in the next forward propagation.

Fig. 3. Training and inference on SP side.

As shown in Fig. 3, in the training phase, SP trains the

binarized CNN model on plaintext text with a three-layer

structure. After data is encrypted in the client-side, SP accepts

the users’ encrypted data to perform binarized CNN inference,

which can support homomorphic operations.
1) Binarized CNN Model in Training: Our binarized CNN

model includes a Binarized Convolutional Layer, Max Pooling

Layer, Fully Connection Layer. We train our model with mini-

batch algorithm [29] on plaintext. Here our loss function is

cross entropy-loss C.
Binarized Convolutional Layer: In this layer, inputs and

weights are binarized. Comparing with the traditional con-

volutional layer [30] which uses float number as weights, it

uses efficient bit calculation instead of multiplication. There-

fore, Binarized Convolutional Layer is faster. With initialized

weights W , we approximate W with a sign matrix sign(W )

and a float parameter α as follows: (1) We construct the

binary weight matrix sign(W ) by extracting the sign of weight

W , where binary values 0 and 1 represent negative sign

and positive sign values in W , respectively. (2) We get the

absolute value of each number in W and calculate the average:

for 0≤ i ≤ w, 0≤ j ≤ h and 0≤ k ≤ c, we define

α =
∑ |Wijk|
c×w×h . With matrix sign(I) and K from client-side,

float point convolutional operation can be approximated as

followings:

I ∗W ≈ sign(I)∗sign(W )�K�α (1)

In this formula, we define ∗ and � are convolution and dot

product operations, respectively. And we define output matrix

L=sign(I)∗sign(W )�K � α.
Max Pooling Layer: This layer is a sample-based discretiza-

tion process. It provides an abstracted form of representation

to solve the over-fitting problem. Besides, it reduces the com-

putational cost by reducing the number of parameters to learn.

In this layer, we apply a 2×2 max filter to non-overlapping

subregions of the input L. In the regions represented by the

filter, we can calculate the max of the down-sampling area

and get the maximum value. Then, we get the matrix M as

the output of this layer, every element of M is the max of a

region from the input matrix L.
Fully Connection Layer: The role of this layer is to reor-

ganize the local features extracted from the previous layers

Fig. 4. The structure of binarized convolution.

through the weights f and b. The input of this layer is the

matrix M from Max Pooling Layer. And we calculate the

output matrix F=M � f + b, where we use � to represent

dot product operation.

2) Binarized Convolutional Layer in Inference: Different

from processing on the plaintext, our binarized CNN inference

model accepts the encrypted data from the user side, which

is implemented under bit-wise operations on plaintext and

ciphertext. From client-side, SP receives [sign(I)] and [K]

as this layer’s input. From the training phase, we can get

binarized sign(W ) and α as weights. Since the homomorphic

calculation requires support bit-wise operations, we convert

float number α into a 10-bit vector α keeping the 10 most

important bits of α.

Then, the process of this layer can be represented as the

following formula:

[L] = [sign(I)]∗sign(W )�[K]�α (2)

Similarly, we define ∗ and � are convolution and dot

product operations, respectively.

As shown in Fig. 4, on the SP side, two key steps in

Binarized Convolutional Layer are Dot Product Operation(·)
between [K] and α, as well as Binarized Convolution
Operation(·) between sign(W ), [sign(I)].

Binarized Convolution Operation(·): In this operation,

input are n × n [sign(I)], c × m × m sign(W ), and output

is an encrypted matrix c× p× p [S], where p = n−m+ 1.

For the ith channel in sign(W ), we can calculate [Si,j,k] as

followings(i, j, k represent the subscripts of [S]):

[Si,j,k] =

m∑
a=0

m∑
b=0

ep(h-xnor([sign(Ii+a,j+b)], sign(Wi,a,b)))

(3)

We use h-xnor(·) to perform homomorphic calculation be-

tween [sign(I)] and sign(W ), and we get 1-TLWE m × m
encrypted matrix [E]. Then we use ep(·) to convert every

element in matrix [E] into 10-TLWE ciphertext. Finally, we

use Adder(·) to complete
∑

function in the above formula,

and sum all ciphertext in [E] and get the ciphertext [Si,j,k].
Since our model’s weights are plaintext and input data is en-

crypted, our bit-wise operations should support homomorphic

calculation between plaintext and ciphertext. Here, we design
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Fig. 5. Operations on binary number.

hybrid xnor operation(h-xnor(·)), hybrid and operation(h-
and(·)), hybrid xor operation(h-xor(·)), not operation(not(·))
and constant operation(constant(·)). In these operations, in-

puts are ciphertext C and plaintext P . We define P ∈{0, 1}
and ciphertext C can be defined from Enc(m, s), where

m is the message ∈ {0, 1} and s represents secret key.

Here, C=Enc(m, s)=(a, b), where a is a vector and b is an

integer. We define h-xnor(·), h-and(·), h-xor(·), not(·), and

constant(·) as following formulas:

h-xnor(C, P ) =

{
(−a,−b) If P = 0

(a, b) else
(4)

h-xor(C, P ) =

{
(a, b) If P = 0

(−a,−b) else
(5)

h-and(C, P ) =

{
(0, 0) If P = 0

(a, b) else
(6)

not(C) = (−a,−b) (7)

constant(C) = (0, 0) (8)

In the above formula we use (−a,−b) to represent the result

of negating vector a and the integer b. And we use (0, 0)
to represent that a is converted into vector 0, integer b is

converted into integer 0.

ep(·): After h-xnor(·) between sign(W ) and [sign(I)], we

get 1-TLWE ciphertext that is not compatible with subsequent

addition calculations. This operation is responsible for con-

verting 1-TLWE ciphertext into N-TLWE ciphertext. Here we

define the input of ep(·) is 1-TLWE ciphertext [a] and the

output is N-TLWE ciphertext [b]. The operation of ep(·) is

described in Algorithm 1, where m is the loop variable and

[temp] is 1-TLWE ciphertext. For example, as shown in Fig. 5,

when we need to calculate binary number -1 (users’ data) and

1(weights’ data) and expend the result to 4-TLWE ciphertext

C. (1) We encode the binarized number. (2) Encrypt users’

data, [0] = Enc(0, s). (3) We get C0=h-xnor([0],1)=[0]. (4)

We have ep(·) on C0 and get C as final result: first, perform

not(C0) to get intermediate variables [temp], which is equal

to [1]. Perform copy(·) and make every TLWE ciphertext in

C is equal to C0. Then we perform constant(·) and not(·)
on C0. Finally, we get the result [1][1][1][1] as C.

Algorithm 1: ep(·)
Input: 1-TLWE ciphertext [a]
Output: N-TLWE ciphertext [b]
[temp]=NOT([a]);
m = 0;

while m < N do
[bm] = [temp];
m = m+ 1;

end
[b0]=constant[b0];
([b0])=not([b0]);

Adder(·): Homomorphic add is the basic operation for our

binarized CNN model. In this operation, we input n-bit X and

Y , get n-bit Sum as the output. Here, we define n-bit Carry
as intermediate variable. We can build the adder according to

the following formula:

Carryi+1 = (Xi × Yi) + (Xi + Yi)× Carryi (9)

Sumi = Xi + Yi + Carryi (10)

In our model, we use and(·) and xor(·) to represent × and

+ in formula. Before perform bit-wise operations, the adder

will determine if the input is plain or ciphertext. If Xi or Yi

is plaintext, we use h-and(·) and h-xor(·) to perform homo-

morphic calculation. Otherwise, we use bit-wise operations in

[15] to finish add. Therefore, Adder(·) not only performs add

calculation between ciphertext and plaintext, but also between

ciphertext and ciphertext.

After finishing Binarized Convolution Operation(·), SP

implements Dot Product Operation(·) on matrix [K], the

weight α and encrypted matrix [S] by using homomorphic

Multiplier(·).
Dot Product Operation(·): This operation’s inputs are p×p

encrypted matrix [K], c×p×p matrix [S] and the parameter

α. And its output is a c × p × p encrypted matrix [L]. For

0≤ i, j ≤ p and 0≤ u ≤ c, where i, j, u represent the index

of the matrix:

[Ll,i,j ] = Multiplier([Su,i,j ], [Ki,j ],α) (11)

Multiplier(·): We build this homomorphic multiplier by

using and(·) and Adder(·). In this multiplier, we input two

n-bit X and Y , and we define n-bit C0,C1,. . . , Cn−1 are

partial products. We can calculation the ith partial product

by using and(·), where j represents the matrix index and

j ∈{0, 1, · · · , n− 1}:

Ci
j = and(Xi, Yj) (12)

Then, we perform not(·) on partial products’ highest bit

and create new C0,. . . ,Cn−1. With our Adder(·), we get

result Sum=Adder(C0,C1,. . . Cn−1) according to dislocation

addition.

By finishing Dot Product Operation(·) under FHE, we take

the encrypted matrix [L] as the input of the pooling layer.
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3) Max Pooling Layer: In the binarized CNN model, we

use Max Pooling Layer [30] to reduce the size of the model

and improve the robustness of the extracted features, as well

as increase the calculation speed. In this layer, the input is a

l × p × p encrypted matrix [L] and output is the l × q × q
encrypted matrix [M ], where q=p/2. We use 2×2 max filter

to non-overlapping subregions of input matrix [L], and then

we use Compare(·) to calculate the max of down-sampling

area. With the max of the region from input matrix, we create

the encrypted matrix as the output.

Compare(·): This operation can compare two ciphertext and

get the maximum value. Suppose [x] and [y] are two m-TLWE

ciphertext, x =
∑m−1

i=0 xi2
i and y =

∑m−1
i=0 yi2

i (m is the

bit-depth of x and y, x and y are decomposed and encrypted

bit by bit as [x0], [x1], · · · , [xm−1] and [y0], [y1], · · · , [ym−1]).
We construct the circuit by following calculation equation:

t0 = [0], ti+1 = ([1]− ([xi]− [yi])
2)× ti + [xi]× ([1]− [yi])

(13)

After m times rounds of calculations, we will get 1-TLWE

ciphertext tm (tm is the result for [x > y]: if [x] > [y], we

will get tm = [1], else tm = [0]). Obviously, we need to adjust

this algorithm to make it compatible with our model. We use

h-and(·), h-xnor(·), h-xor(·) represent the operators +,−,×
in the above formula:

t0 = 0, vi = [xi] h-xor [yi] (14)

ti+1 = {(1 h-xnor vi) h-and ti} h-xor {[xi] h-and (1 h-xor [yi])}
(15)

Consider the sign bit, we define ciphertext

[Sign]=h-xor([xm−1],[ym−1]). Then we update tm=h-
xor(tm,[Sign]). We define m-TLWE [R] as the output of

Compare([x], [y]). To get [R], we use tm to calculate with

[x] and [y] on bit level as following rule:

[Ri] = {tm h-and [xi]} h-and {not(tm) h-and [yi]} (16)

After m times rounds of calculations, we will get final

ciphertext [R] as the result to represent the maximum between

[x] and [y].
4) Fully Connection Layer: The fully connected layer

combines the features extracted from the convolutional layer

and the pooling layer. This layer plays the role of mapping the

learned feature representation to the sample label space. In this

layer, input data is a l×q×q encrypted matrix [M ] and output

is a 1×N [F ], where N represents number of categories. With

weights f and b, we define the output [F ]=[M ]�f+b, where

the size of f is N × l× q× q and the size of b is N × 1. We

use Dot Product Operation(·) and Adder(·) to construct the

operations in Fully Connection Layer as follows:

(1)We define 1 × N encrypted vector [H]=Dot
Product Operation([M ],f ) (2) Output encrypted data

[F ]=Adder([H],b).

Here, we describe the activation function in the binarized

CNN inference. In our paper, we use ReLU function as the

implementation of activation function.

For input data x, ReLU(x)=Max(0,x). Since we have

realized ciphertext comparison, we can easily construct

ReLU([x])=Compare(0,[x]). However, since the ciphertext is

expressed as bits, it is time-consuming. Here, we provide

a more efficient way to construct ReLU function as shown

in Algorithm 2, where the input is a n-TLWE ciphertext

[a] and output is a n-TLWE ciphertext [b]. We also define

[temp]=not([an−1]), for 0≤ i ≤n-1: [bi]=and([ai],[temp])

Algorithm 2: ReLU

Input: n-TLWE ciphertext [a]

Output: n-TLWE ciphertext [b]
[temp]=not([an−1])
while 0≤ i ≤n-1 do

[bi] = and([temp],[an−1])
end

In this layer, we don’t use softmax layer. Since softmax

layer is calculating the percentage of each category, and it

won’t change the result itself. Consequently, when users get

and decrypt the result, they can still know which category the

data belongs to without the softmax layer.

IV. RESULTS AND ANALYSIS

Our model is implemented in C++. The model and op-

erations are executed using a PC with i7-6700 CPU and

8G RAM. To describe our framework, we construct a three-

layer binarized CNN and single-layered binarized perceptron

in Pytorch. And all of our models are carried out using single

thread.

Binarized CNN: We build and test the CNN model on

the MNIST dataset, and the input and convolutional layers’

weights are binarized. In this model, we use 60,000 images

for training and 10,000 images for testing.

Binarized perceptron: We build and test the perceptron

on the Breast Cancer dataset, and the input and weights are

binarized in this model. In this model, we use 460 cancer

data for training and 115 cancer data for testing. The time-

consuming of the model in experiments is the average time

overhead on the test dataset.

The code of these models can be found in

https://github.com/Karry11/Package.

A. Results

As shown in Table I, we give models’ time-consuming

and accuracy under homomorphic encryption, including our

binarized CNN inference, binarized perceptron, hybrid CNN

[12], perceptron [12] CryptoDL [13], FHE-DiNN [16] and

MiniONN [3]. Our model is constructed under the boolean

circuit scheme, which performs bootstrapping in gate circuit

calculation. Compared with the perceptron in [12] under the

boolean circuit, our binarized perceptron is 3.6 × faster than

it with almost the same accuracy.

165

Authorized licensed use limited to: University of Greenwich. Downloaded on September 30,2020 at 21:03:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TIME-CONSUMING OF INFERENCES OVER ENCRYPTED DATA

Encryption Operation ReLU Models Time Accuracy

FHE Boolean Supported

Perceptron [12] 4m 13s 97.7%
Binarized Perceptron 1m 11s 97.6%

Hybrid CNN [12] 58h 11m 21s 99%
Binarized CNN 41h 36m 29s97.11%

LHE Non-BooleanUnsupported
CryptoDL [13] 2m 29s 99.21%

FHE-DiNN [16] 1.7s 96%
MiniONN [3] 9.32s 99%

TABLE II
TIME-CONSUMING OF HOMOMORPHIC OPERATIONS

Operations Time Bit-Depth

Binarized Ciphertext Comparision 0.27s 8
Ciphertext Comparision [15] 0.71s 8

Binarized Ciphertext Comparision 0.64s 16
Ciphertext Comparision [15] 1.44s 16

Binarized Convolution 6h 24m 14s 20
Hybrid Convolution 40h 36m 48s 20

Encrypted Convolution 102h 9m 58s 20
ReLU 0.09s 8
ReLU 0.21s 16

The binarized CNN inference we have designed is similar

to hybrid CNN in [12], but we construct a Max Pooling

Layer that can help reducing data dimensions. Experimental

results show that our binarized CNN inference is almost 1.4

× faster than theirs. It demonstrates that binarized operations

have a positive effect on accelerating ciphertext calculation.

Different from our model being implemented using FHE, these

three models including FHE-DiNN [16], MiniONN [3], and

CryptoDL [13] are built under non-boolean circuit and level

homomorphic encryption (LHE). Benefit from LHE, the above

three models perform better than ours in computational speed.

However, the accuracy of the activation function still needs

to be improved in their models. For example, in CryptoDL

[13], they used a polynomial to replace a nonlinear function.

To a certain extent, this will lead to a decrease in the

accuracy of the model. Benefit from bit-wise operations under

FHE, our models construct ReLU activation function without

loss of precision. Besides, our model constructs ciphertext

comparison and max pooling layer [30], which has the effect

of dimensionality reduction on data.

To illustrate the efficiency of our binarized convolution, we

reconstruct the hybrid convolution in [12] with the same 20

bit-depths, 5 × 5 convolution kernel and 28 × 28 encrypted

image. At the same time, we construct encrypted convolution

whose weights and data are encrypted. As shown in Table

II, our binarized convolution is 6.3 × faster than hybrid con-

volution in [12] and 16 × faster than encrypted convolution.

When models use larger bit-depths, our method can improve

the computational efficiency more.

For ciphertext comparison under the boolean circuit, in 8-

TLWE ciphertext level, our algorithm is 2.6 × faster than

ciphertext comparison in [15]. In 16-TLWE ciphertext level

[15], ours is 2.3 × faster than theirs. It shows our method

works in bit-level ciphertext calculation.

Fig. 6. time-consuming distribution in Binarized CNN inference

TABLE III
ACCURACY ON PLAINTEXT AND CIPHERTEXT

Model MNIST Accuracy

Binarized CNN Plaintext Dataset 97.34%
Binarized CNN inference Ciphertext Dataset 97.11%

Here we give the time spent to the specific operations. As

shown in Fig. 6, the max pooling layer and Fully Connection

Layer of our binarized CNN inference take 39 minutes 42

seconds and 21 hours 16 minutes 12 seconds, respectively. In

these two layers, we use 25 bit-depths to represent the weights

and encrypted data to get more precise results.

As shown in Table III, we compare the accuracy of binarized

CNN inference and CNN on the test dataset. It indicates that

there is little loss of accuracy when encrypted data is processed

in the inference models. In this area, we can also try to use

fewer bits to encode inputs and weights for reducing the time-

consuming of the model.

B. Analysis

Due to the complexity of homomorphic calculations and the

enormous computational complexity of neural networks, the

computational process is time-consuming under the boolean

circuit. Compared to the traditional secure CNN inference in

[12], our model binarizes the input data and weights in bina-

rized convolution to accelerate the calculation speed of CNN

inference. In our model, we implement bit-wise operations

into convolutional layers instead of ciphertext multiplication.

Since the weights and input are binarized in our model, we

use less ciphertext space to encrypt original data and store.

This makes our model performs better in speed and storage

than their work.

In section 4.1, simulation results indicate that our binarized

convolution operation costs 6 hours 24 minutes 14 seconds,

and the hybrid convolution [12] costs 40 hours 36 minutes

48 seconds in the same condition. Ours is 6.3 × faster than

theirs. By comparing with the secure perceptron in [12], our

secure binarized perceptron costs 1 minute 11 seconds and

performs 3.6 × faster than theirs. Besides, we achieve a
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more efficient ciphertext comparison algorithm. Our binarized

ciphertext comparison is 2.6 × and 2.3 × faster than tradi-

tional comparison algorithm [15] in 8-TLWE and 16-TLWE,

respectively.

We compare our model with the non-boolean circuit and

LHE, like CryptoDL, our binarized inference model uses the

bite-wise operation to construct ReLU function without fitting

a polynomial as an activation function. This will help us

improve the recognition rate of the model during the training

and testing phases. Similarly, compare to Fast-DiNN and

MiniONN, our model supports efficient ciphertext comparison,

which is the key to Max Pooling Layers. It will reduce the

complexity of the model and the dimensions of the data.

V. CONCLUSION

In this paper, we proposed the secure binarized CNN

inference and perceptron, where the models are implemented

by bit-wise operations to optimize ciphertext inference. Fur-

thermore, we designed a ciphertext comparison algorithm

to reduce the dimension of ciphertext data. To increase the

nonlinear expression of the model, we used the ReLU function

as an activation function, which is implemented by bit-wise

operations including not(·) and and(·). Since Fully Connec-

tion Layer’s weights aren’t binarized, we found that fully

connected layers occupy 51.2% of the time in the entire model.

Despite this, there is still great potential to increase the speed

of computing in the neural network inference model. In the

future, we will consider a training model with binary value and

trying to create a method to replace the batch normalization

in deep learning under fully homomorphic encryption.
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