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a b s t r a c t 

This paper proposes a novel game-theoretic framework for defending against Advanced Persistent Threats 

(APTs). It applies the original Cut-The-Rope model into an experimental study extending the previously 

studied attacker movements beyond the Poisson distribution to a realistic set of attack actions. More im- 

portantly, it demonstrates the value of this framework on an experimental study of an APT defense game 

on attack graphs, which lets a security officer establish an optimized defense policy against stealthy in- 

trusions. The security model and algorithm under study is designed for practical use with attack graphs 

as threat models, possibly including vulnerability information if available. The game-theoretic optimiza- 

tion delivers a proactive defense policy under the following assumptions or requirements: first, we do 

not need to assume that the system is, or has been, clean from adversaries at any time. At the moment 

when the defender computes the defense policy, the attacker is assumed to already be in the system 

(also having penetrated it until an unknown depth). Second, the defender does not rely on any signaling 

or other indicators of adversarial activity, nor is there a reliable feedback mechanism to tell the defender 

if its actions were successful or not. Third, the model can use information on exploits, such as Common 

Vulnerabilities and Exposures (CVE) numbers, to refine the defense game, but can also operate without 

such information. We corroborate our findings on publicly documented attack graphs from the robotics 

domain; without and with CVE information. We run experiments against two different types of defense 

regimes, and compare the results against an intuitive baseline defense heuristic. The results show that 

the optimized defense strongly outperforms simple heuristics, like taking the shortest or easiest attack 

paths. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Contemporary Advanced Persistent Threats (APTs) undergo a se- 

uence of common “phases”, which in the simplest instance boils 

own to three: (i) the initial infection (where the attacker makes 

he initial contact, e.g., by sending a successful spam or phishing 

mail, usually after a reconnaissance phase of finding out details 

bout the victim system to break in); (ii) a silent phase of pen- 

tration and learning (where the attacker gets into the system as 

eep as it can; often slowly and stealthy to avoid detection); and 

iii) a weaponization and damaging phase. Security models can re- 

ate to a specific phase or be heterogeneous models spanning mul- 
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iple phases ( Rass and Zhu, 2016 ). This work is concerned with the 

aily business of defense, under the assumption that the infection 

as already happened, but there has not been any damage so far. 

hus we are in the “incubation” phase in the APT life-cycle. 

A refined view on the evolution of an APT is the kill chain 

 Kamhoua et al., 2018 ). This consists of reconnaissance, exploit, com- 

and & control, privilege escalation, lateral movement and objec- 

ive/target , in the sequential order just given. This work proposes 

 game-theoretic model intended to support the daily business of 

 Chief Security Officer (CISO), seeking a proactive defense against 

n invisible intruder and more elaborated attacks. We assume that 

he adversary is already in the system, 1 and the CISOs duty is pre- 
1 Following the famous quote of Robert S. Mueller: “There are only two types of 

ompanies: Those that have been hacked and those that will be hacked.”
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enting damage. The battlefield on which the CISO, hereafter called 

he defender, matches the stealthy adversary, is an attack graph. 

This is a graph-theoretic model of a system, relating individual 

ystem components to threats and exploits on them thereby vi- 

ualizing possible attack paths towards defined target nodes. Such 

ttack graphs can be compiled from threat modeling activities and 

urther refined with penetration tests and the help of topological 

ulnerability scans (see, e.g., Jajodia et al., 2011 ). On the attack 

raph, we play a stealthy intrusion game with infinite time hori- 

on and repetitions, in which the defender takes action to keep 

he attacker away from the critical assets in the enterprise, while 

he adversary is on its way towards some target asset, along one 

r more attack paths. The game instantly terminates if the attacker 

as reached the critical asset, in which case the defender (perma- 

ently) lost. 

The interaction between the two players is constrained as fol- 

ows: 

ssumption 1. The attack graph G = (V, E) consists of V nodes and

are the edges (e.g., exploits); see Fig. 2 for an abstract example 

nd the use-case Section 4 for concrete practical instances. We as- 

ume a single starting node (for all attacks), and a single target 

ode, representing some critical asset to be captured. The graph is 

ssumed to be acyclic (thus, the attacker will never enter infinite 

oops along accomplished exploits), and all paths (more precisely 

he attack paths/vectors) lead to the target asset. We denote this 

arget as v 0 ∈ V hereafter. The nodes in V represent system threats 

nd vulnerabilities, or system states, while edges represent threats 

r exploits to get from one component/state into the next compo- 

ent/state. For example, the adversary may jump from a desktop 

omputer v pc to a server v serv er , or may gain root privileges, de- 

oted as v pc,root from user-level privileges v pc,user on the same com- 

uter. In either case, we would have a directed edge v pc → v serv er ,

r v pc,user → v pc,root to express this attack path in the graph model. 

ssumption 2. The adversary is already somewhere in the system 

t an unknown location when the defender enters the gameplay 

i.e., we are past the event of infection/reconnaissance). We also 

ssume that the defender has no indication of adversarial activity 

e.g. there is no Intrusion Detection System (IDS) or the IDS has 

ot detected the activity); the adversary is stealthy . In absence of 

dversarial signals, the defender may assume all possible locations 

f the adversary as uniformly distributed (the inclusion of signals 

s discussed in Section 7.5 ). 

ssumption 3. The adversary may run parallel or concurrent at- 

acks , thereby exploiting several, up to all, attack paths simulta- 

eously to maximize its chances to conquer v 0 . 

This general setting was converted into a game-theoretic model 

n Rass et al. (2019) , named Cut-The-Rope : Like on a chess-board ,

he adversary in Cut-The-Rope runs parallel attacks, one on each 

ttack path available. Since the attacker’s location on each attack 

ath is unknown to the defender, this player imagines a whole “co- 

ort” of avatars starting from all possible locations in the network 

nd moving towards v 0 . The strategic choice of the adversary, from 

he defender’s perspective, is about existing attack paths, but the 

efender does not know where the attacker is, equivalently, how 

ar the adversary has already come down an attack path π . To 

ackle this uncertainty, the defender plays the game as if the ad- 

ersary would first (strategically) choose the path π , and move all 

vatars on π simultaneously towards v 0 . In other words, it moves 

vatars at all possible, not necessarily also probable , locations. The 

arget asset (and security game) is lost (to the attacker), if at least 

ne of the adversary’s avatars reaches v 0 . 
For the adversarial movement, Cut-The-Rope lets the defender 

ssume a random distribution on how many steps an avatar can 
2 
ake when it is on the move. This random movement pattern is 

 model design choice, and the original work ( Rass et al., 2019 )

bout Cut-The-Rope assumed one specific movement regime, in 

hich the defender acts periodically, and the attacker has some 

aggressiveness level” λ, interpretable as an “expected number ex- 

loits per day” or within a defined unit of time. This amounts to a 

oisson-distributed number of steps taken along the attack path. 

In this paper, we go beyond the first Cut-The-Rope implemen- 

ation by studying ( Section 3 ) three other patterns of adversarial 

ovement besides the original Poisson model, and evaluate the 

efense level that a CISO can obtain from using Cut-The-Rope as 

 method to determine a security policy. 

esearch questions and contribution 

Some companies have CISOs with a fixed working schedule, 

hich corresponds to a periodically active defender (working days, 

ay/night-shifts, etc.). What if there is a 24/7 continuous response 

eam available, like in bigger (globally distributed) companies that 

un their own security operations center? These (multiple) defend- 

rs may become active at random time intervals and at any time. 

or the security game, it means that the defender will not be ac- 

ive periodically, but rather at random times and possibly at any 

ime. This is the first new movement contributed and studied in 

his work. 

Both, the original Poisson movement and the just described 

ontinuous security response policy are agnostic of the particular 

etails of exploits, like their difficulty or severity. However, many 

ttack graphs do carry additional information about exploits, and 

f so, it is desirable to use it in the security model. These addi- 

ional details can range from a security threat research and risk 

ssessment or scoring like Common Vulnerability Scoring System 

CVSS), up to proof of concept implementations for each exploit. 

he second new movement pattern proposed in this work makes 

he attacker’s traversal dependent on exploit complexities (threats 

ssigned a higher complexity would thereby be probabilistically 

ess feasible), as far as they are known, and studies the defense 

erformance against a defender that is again periodically active. 

The third new movement pattern is a combination of a defender 

hat can take action at any time in a 24/7 continuous security pro- 

isioning, against an attacker that has to deal with threats and ex- 

loits of different complexity. We stress that none of these cases 

ssumes a purely reactive defense, i.e., we do not study security re- 

ponse patterns when the incident has been noticed. This is due to 

he assumption of stealthiness of the intrusion; once the attacker 

ecomes visible, it is because the target asset v 0 was lost (perma- 

ently). 

The other contributions of this work are two case studies: 

We first provide an experimental study and illustration of how 

o use Cut-The-Rope in different settings, based on two docu- 

ented attack graphs for industrial robots. Specifically, we look 

t the Modular Articulated Robotic Arm (MARA) and Mobile in- 

ustrial Robotics MiR100 robots ( AcutronicRobotics, 2021; Alias 

obotics, 2019; 2020; 2021 ), for which attack graphs have been 

ompiled by security experts. On these, we instantiate Cut-The- 

ope and compute results in the aforementioned settings of a peri- 

dically/randomly active defender versus an attacker that traverses 

n attack path with uniform speed at an average number of ex- 

loits per time unit, or mounts attacks with individually distinct 

xploit complexities, thus being slower or faster, depending on the 

hosen path. 

Experiments are conducted on the MARA robot, for which 

he threats and exploits are known, but without a CVSS rating 

r further details. In that case, the original Poisson model from 

 Rass et al., 2019 ) and the first of the new patterns announced

bove are usable. The other case study is on the MiR100 robot, 
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Fig. 1. Basic Gameplay of Cut-The-Rope . 
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2 If the defender would not move away from the target, there would be nothing 

to accomplish here for the adversary and there would be nothing to analyze. 
3 We herein assume that there is no direct way to just get back to the later point: 

if there would be such a shortcut route bypassing the just-closed backdoor, this 

would be another attack path, taken by a respectively other avatar. 
hose attack graph carries additional vulnerability and exploit de- 

ails, so that the other two new movement patterns, described be- 

ow in Section 3 , become applicable. 

. The model 

In the following, we let sets appear as upper case letters, 

nd vectors and matrices in boldface font. Given a finite set X , 

he symbol �(X ) denotes all (categorical) probability distribu- 

ions supported on X , i.e., an element x ∈ �(X ) has the elements 

p 1 , . . . , p | X | ) with p i = Pr (x i ∈ X is chosen). The symbol | X | is the 

ardinality of the set X . 

We refrain from replicating the full formal description of Cut- 

he-Rope , and instead summarize its concept in Fig. 1 . The game is

layed entirely from the defender’s viewpoint: the defender knows 

he attack graph G = (V, E) and can enumerate the attack paths on

hich the adversary can be. For simplicity, we assume that the 

umber of these routes is tractably small. Generally, the number 

f routes can be exponential in the cardinality | V | of nodes, but 

y strategic domination and other heuristics, some routes may be 

afely excluded from consideration. We will revisit this point later 

n Section 7.4 . 

To express the uncertainty about where exactly the adversary 

s, the defender acts as if the attacker would move a whole cohort 

f avatars towards v 0 , each avatar starting from another possible 

ocation in the attack graph with uniform probability. The game is 

ound-based, where the exact meaning of a round depends on the 

oving patterns of the defender and the attacker: 

• If the defender acts periodically in fixed intervals (e.g., daily), 

a round of the game is one period of activity for the defender 

(e.g., one day). During this period of time, the attacker can take 

a random (unlimited) number of steps along the attack path 

towards the goal. 
• If the defender is taking action at random, e.g., taking exponen- 

tially distributed pause times, then a round of the game is, in 

each instant, the random idle time of the defender. Again, dur- 

ing these periods, the attacker can take any number of actions, 

depending on its “configuration” and/or the attack path. In the 

terminology of the FlipIt game ( van Dijk et al., 2013 ), this is

called an exponential defense strategy . 

In both cases, we do not explicitly model the time to complete 

 spot-check and merely assume this completion to be possible 

ithin one unit of time. Including the defender’s costs for spot- 

hecking as a separate goal (to minimize) makes the game multi- 

riteria and calls for Pareto-optimization, which we leave out of 

ur scope in this work (and up to future considerations). We will 

ome back to the exact meaning of a “round” or “unit of time” in 
3 
ection 3.1 . Let us first complete the description of the gameplay: 

ig. 1 displays two attack paths, with the lower path showing the 

tep-by-step traversal of an avatar towards the goal v 0 . Every pos- 

ible action of the defender is here called a spot-check at any node 

n V \ { v 0 } , where the target node is excluded to avoid trivialities. 2 

 spot-check can mean any action that, for example, (i) cleans a 

omponent from malware, (ii) disables certain services that an ex- 

loit would rely on, (iii) changes in the security policy or imple- 

entation that invalidates the adversary’s knowledge (e.g., access 

ontrol mechanisms), or similar. Common to all actions of the de- 

ender is their transient efficacy, which means that the effect of 

uch an action is not permanent (the opposite case is discussed 

ater in Section 7.2 ). After the action, and not necessarily known 

o the defender, the attacker is sent back on the attack path to an 

arlier position (upper part of Fig. 1 ). For example, if the so-far ac- 

omplished route has at some point used access credentials for a 

omputer, and the defender has just changed them, the route is 

ssentially closed at this point, and the attacker has to re-try just 

efore this point 3 The avatars can go unaffected by the defender’s 

ction in two cases: (i) if it travels on a different route that the 

efender did not inspect in this moment (e.g., lower attack path 

n Fig. 1 ), or (ii) the attacker started from a location after the cut

oint (e.g., if the attacker is left to the cut point � in Fig. 1 ). This

ssumption implicitly accounts for “out of attack graph” ways of 

he attacker having reached this location In either case, the avatar’s 

ourney is not intercepted. 

The attacker may at any point decide to try a different route 

nstead. This is called lateral movement . It is naturally included in 

his modeling by having avatars on all attack routes, which makes 

ateral movement nothing else than moving other avatars on an- 

ther route. Cut-The-Rope is played under the assumption that an 

vatar can be thrown back to an earlier point by the defender, but 

ill in any case re-try its current attack path, until it (or any of its

lones) has reached the goal. 

The payoffs in the game are zero-sum, and come to the prob- 

bility of reaching v 0 in a single round of the game. This is the 

ayoff to the attacker, and likewise the loss of the defender, who 

eeks to minimize this probability. Its computation depends on the 

robability distribution law that governs how many steps N can be 

aken during the defender’s idle periods. This is the main ingredi- 

nt whose influence is studied in this work, relative to a heuristic 

est-practice defense. 
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The payoff to the adversary is the chances for any of its avatars 

o reach, from its current position, the target v 0 within N steps and 

ithin the time-limit W , during which the defender is idle. 4 This 

an be fixed (for a periodic defender) or random (for an exponen- 

ial defense strategy). We collect all avatars in a set � ⊆ V \ { v 0 } , 
nd denote individual avatars as θ ∈ �. The exclusion of v 0 from 

his set is to avoid the trivial case where the attacker has already 

eached v 0 before the defense game starts. The payoffs to both 

layers are: 

 attacker = −u defender = Pr ( adversary reaches v 0 ) (1) 

e will analytically determine this quantity in Section 2.2 in ex- 

ressions (7) and (8) , which make the dependency on the strategic 

hoices of the defender and attacker visible and explicit. 

.1. Strategies 

We now turn to the description of how the defender’s and at- 

acker’s action determine the probability to reach v 0 . The strate- 

ic choices of both players towards maximizing or minimizing 

r ( adversary reaches v 0 ) are the following: 

• The defender has a choice from the set AS 1 := V \ { v 0 } to spot-

check, giving a total of n = | AS 1 | actions. We will write x ∈ 

�(AS 1 ) for a randomized such spot-checking rule. 
• The attacker can likewise use a total of m = | AS 2 | attack paths 

in G , collected in the set AS 2 . Each avatar starts from a differ-

ent location θ ∈ � = V \ { v 0 } and traverses one of the (perhaps 

many) routes from θ towards v 0 . The adversary solution in the 

game is the best choice of attack paths from AS 2 . Likewise, we 

will write y ∈ �(AS 2 ) for a random choice from the set of at-

tack paths. 

Every avatar takes action by being moved forward along the at- 

ack path that it is on, and draws/samples a random number N

rom a fixed step-distribution f N . This is not a strategic choice, but 

ather a part of the game’s payoff mechanism . Low-level procedures 

f how the avatar technically mounts exploits are not expressed 

or modeled in the game itself (due to the heterogeneity and sheer 

umber of possibilities of exploits in a real-life attack graph). 

.2. Definition of payoffs 

For the sake of rigor, let us concretize (1) by showing how it 

s practically obtained. This will also display the role of the move- 

ent patterns (periodic, exponential) in the experimental analysis. 

orking out the adversary’s utility is a matter of conditioning the 

ttack step distribution F N on the current situation in the network, 

.e, the position of the avatar and where the defender took action. 

Let π1 , π2 , . . . , πm 

be an (exhaustive) enumeration of all attack 

aths, each starting from another location θ ∈ � ⊆ V \ { v 0 } . Each 

tarting location is thus identified with one avatar, and the adver- 

ary moves all of them towards v 0 . Let m be the total number of

ll attack paths. 

Each such path is again a sequence of nodes, written as π = 

θ, w 1 , w 2 , . . . , v 0 ) with all w i ∈ { v 1 , v 2 , . . . } = V and θ ∈ � being

he starting point of the route, one-to-one corresponding to an ad- 

ersarial avatar. The set of nodes constituting π is V (π ) . Further- 

ore, let d π (u, v ) ∈ N count the edges on the path π from u to v .
t is a graph-theoretic distance. 
4 Here, we simplified the payoff representation from a vector-valued distribution 

n Rass et al. (2019) over the attacker distance to the goal, to the probability of 

eaching the goal. This does not affect the solution of the model, but facilitates 

eadability. 

2

 

c  

t

p

4

Then, the location distribution for the attacker assigns to each 

ode v ∈ V the mass 

r ( avatar location = v | V (π )) = 

f N (d π (θ, v )) 
Pr N (V (π )) 

, (2) 

n which f N (n ) = Pr (N = n ) , where N ∈ { 0 , 1 , 2 , 3 , . . . } is the ran-

om number of steps undertaken by the avatar, and 

r 
N 

(V (π )) = 

∑ 

x ∈ V (π ) 

Pr 
N 
(d π (θ, x )) = 

∑ 

x ∈ V (π ) 

f N (d π (θ, x )) . (3)

he probability density f N will be the main element to vary 

hen describing different attacker-defender scenarios (such as an- 

ounced in the introduction under the contributions). We will give 

arious options to define f N in Eqs. (10) , (11), (12) and (13) . 

Now, the defender attempts to break the attacker’s chain of ex- 

loitation (“cut the rope” in the wording of ( Rass et al., 2019 )). Let

 ∈ V be the checked node, then the possibly truncated path is 

| c = 

{
(θ, w 1 , w 2 , . . . , w i −1 ) , if c = w i for some w i on π
(θ, w 1 , . . . , v 0 ) , otherwise. 

(4) 

he closing of a backdoor here becomes a conditioning of the dis- 

ribution of the avatar’s location on the shorter (cut) path π | c . The 

ormula is the same as (2) , only with π replaced by π | c now. Since

 ∼ x follows the defender’s mixed spot checking strategy (possibly 

egenerate), and the set of paths π along which avatars proceed, 

he defender can determine the possible locations of the attacker, 

ased on the imagined avatars, as the vector of probabilities 

 = ( Pr ( adversary ′ s location = v | V (π | c ))) v ∈ V , (5) 

hich depends on the random choices of the defender (“where to 

ut?”) and the attacker (“which route to take?”). This is what the 

mplementation of Cut-The-Rope computes. 

The actual quantity of interest for the game, coming back to (1) , 

s the mass that U assigns to v 0 . This is the utility for the adver-

ary and conversely the loss of the defender. Since the game is, 

rom the attacker’s perspective, a strategic choice y ∈ �(AS 2 ) of an 

ttack path, the payoffs in the game are obtained from the follow- 

ng consideration: 

r ( attacker reaches v 0 ) = Pr ( at least one avatar reaches v 0 ) 

= 

∑ 

θ∈ V \ { v 0 } 
Pr ( avatar reaches v 0 starting from θ ) · Pr (θ ) 

= 

∑ 

c,π

∑ 

θ∈ V \ { v 0 } 
Pr [ avatar θ has location v 0 | V (π | c )] ︸ ︷︷ ︸ 

from eq. (2) and (4) 

(6) 

· Pr ( path π is chosen and defender cuts at c) ︸ ︷︷ ︸ 
strategic choices to optimize 

· Pr (θ ) ︸ ︷︷ ︸ 
=1 / | AS 2 | 

= 

∑ 

c,π

∑ 

θ∈ V \ { v 0 } 
Pr 

[ 
avatar θ has location 

v 0 | V (π | c ) 
] 

· Pr 
x 
(c) Pr 

y 
(π ) · Pr (θ ) =: u attacker (x , y ) (7) 

= −u defender (x , y ) (8) 

The equality in the second line herein follows from the fact that 

he attacker will move one avatar at a time, so that no two avatars 

ill simultaneously reach v 0 . The first avatar to reach v 0 will make 

ll others stop, so that the respective events become disjoint. 

.3. Solution concept 

An instance of Cut-The-Rope is a quintuple (G, v 0 , AS 1 , AS 2 , f N ) ,

ontaining: the attack graph G = (V, E) , the target node v 0 ∈ V ,

he defender’s possible spot check locations AS 1 ⊆ V \ { v 0 } , the 

ossible locations AS ⊆ V \ { v } , for the attacker’s avatars. These 
2 0 
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5 For example, using subjective probability, prospect theory and generally em- 

pirical studies on human risk perception and subjective assessments, CVSS ratings 

to derive probabilities from, and others. Helpful related work hereto was done by 

Hota and Sundaram (2018) ; König et al. (2018) ; Xiao et al. (2018) . 
vatars will move towards v 0 along the attack paths encoded in G , 

aking a random number N of steps distributed according to the 

robability density f N . This density determines the particular be- 

avior of the attacker, relative to the defender’s actions, and will 

e generally given in Section 3 , and instantiated for the two real- 

ife use-cases in Section 5 . 

A solution for a given instance is obtained with standard tech- 

iques to compute Nash equilibria: With both players having 

 finite set of choices, and the utility Pr ( adversary ′ s location = 

 | V (π | c )) derived from the location distribution (5) that depends 

n the attack path π , movement pattern f N and spot-check loca- 

ion c, we end up with a (normal-form) matrix game that we can 

nalyze for an equilibrium using known techniques. The solution 

oncept used in this work is a security strategy for the defender, 

aving the following (informal) semantics: it is the best random- 

zed choice rule x ∗ ∈ �(AS 1 ) such that 

 defender (x 

∗, y ∗) ≤ u defender (x 

∗, y ) for all y ∈ �(AS 2 ) (9)

hat is, the defender can, upon playing the optimal spot checking 

trategy x ∗, enforce the worst-case minimal likelihood for the at- 

acker to reach v 0 , for all choice rules y ∈ �(AS 2 ) , i.e., irrespectively

f what the attacker actually does. 

The security strategy is computable by solving a conventional 

atrix game, which is finite since there are only finitely many spot 

heck locations, and likewise finitely many attack paths. The game 

atrix is thus computable by evaluating formula (7) , for all loca- 

ions c ∈ AS 1 and all paths π ∈ AS 2 . The Nash equilibrium of this

ame is (x ∗, y ∗), in which x ∗ is the sought security strategy, and y ∗

s the optimal choice rule for the attack paths towards v 0 . 
The latter information is, however, of limited use for the de- 

ender, since equilibria are generally not unique. Therefore, taking 

 

∗ as a guidance on where to find for the invisible intruder with 

ighest probability can be misleading, since there may be (plenty 

f) other equilibria giving entirely different advice. 

On the contrary, since the saddle point value giving the lower 

ound value in (9) is invariant w.r.t. different equilibria (x ∗, y ∗) 
ny alternative defense advice cannot accomplish any better lower 

ound for the defender. Hence, x ∗ is in fact useful as optimal ad- 

ice. 

emark 1. The original solution concept proposed in 

ass et al. (2019) has been a perfect Bayesian equilibrium, but 

his raises issues with the interpretation of the results. While the 

ame’s setting formally fits into the definition of a perfect Bayesian 

quilibrium as given by ( Fudenberg and Tirole, 1991 ), it does not fit

qually well into the interpretation thereof: the game is not about 

ignaling, while the solution concept in Rass et al. (2019) took an 

quilibrium designed for signaling games. Also, there is no random 

onditioning on adversary types, which a Bayesian equilibrium 

ould require. Rather, Cut-The-Rope is – from the defender’s 

oint – played with avatars, all of which concurrently move on 

heir routes, without a particular type choice made by nature. 

herefore, a security strategy (computed as a Nash equilibrium) is 

he more suitable solution concept. 

. Movement patterns 

In lack of any particular knowledge about the difficulty of the 

ttack path, a simple heuristic is to just use the shortest path , in a

raph theoretic sense. This will later also be the intuitive bench- 

ark (see Section 5.1 ) to compare the defense obtained from Cut- 

he-Rope to a defense based on the (plausible) assumption that 

he attacker takes the shortest/easiest route towards v . 
0 

5 
.1. Periodically active defender 

In the simplest case, originally proposed in Rass et al. (2019) , 

e assume that the defender becomes active in fixed time inter- 

als that are known to the attacker. The unit of time (see the pre- 

ious section) is herein the period in which the defender becomes 

ctive (each day, each week, or similar). Furthermore, we assume 

o particular cost for the attacker to penetrate (this case is cov- 

red in Section 3.2 ). This corresponds to the situation of having a 

just conceptual” attack graph, displaying general strategies to pen- 

trate, but without reference to concrete exploits, CVE numbers or 

imilar. 

During the defender’s idle times, we assume an average num- 

er N ∼ Pois (λ) of steps towards its target at “average speed λ”. 

his analytical choice is common in related literature (see, e.g., the 

lipIt Game ( van Dijk et al., 2013 ) to describe APTs, calling this 

trategy “exponential”). Empirically estimating the rate parameter 

rom data, for example, taken from intrusion detection or other 

onitoring systems is an interesting challenge of independent re- 

earch. 

The function f N for a periodic defender and attacker with aver- 

ge speed λ is the Poisson distribution density 

f N (n ) = f Pois (λ) (n ) = 

λn 

n ! 
e −λ, (10) 

hich would be substituted into (2) and (3) to set up the game. 

The value λ must be set relative to the frequency at which the 

efender takes actions. For example, if the attacker makes two at- 

empts per day, and the defender does one spot check per week, 

hen we have λ = 2 × 7 = 14 . If the defender checks twice per

ay, then the attack rate is λ = 2 × 1 
2 = 1 . The actual choice of λ

as, experimentally, found to mostly impact the likelihood to hit 

 0 . The defense advice, however, did not significantly change (see 

ppendix A ), meaning that an inaccurate choice of λ in practice 

ill deliver a respectively inaccurate estimate on how likely v 0 will 

all, but can nonetheless deliver a valid best defense recommenda- 

ion. 

We assume that the defender has knowledge (or a reasonable 

ssumption) about λ, so that s/he is able to adapt the defense to 

t accordingly, as the security resources permit. The choice of λ it- 

elf can be considered as a strategic decision for the attacker too, 

nowing the defender’s behavior. However, we do not explore this 

ariation here any further, as it leads to a different game, but point 

ut this investigation as a separate research question. We refer to 

he work of Xiao et al. (2018) as being a game about computing 

he optimal check-intervals explicitly with help from prospect the- 

ry, and under some assumptions on the attacker’s attitude (risk 

ppetite, etc.), but not considering attack graphs. 

.2. Probabilistic success on exploits 

The attacker may not necessarily succeed in every penetration 

hat it attempts. As before, if we assign probabilities 5 q (e ) to ex- 

ress the chance of a successful exploit e on the respective attack 

ath. Figure 2 shows some (not all) such exploits as annotations 

e ” in gray color. Formally, q (e ) could be equated to the likelihood 

f meeting some precondition to penetrate a node. Let us slightly 

hange the view to think of an attack path π as a sequence of 

xploits π = (e 1 , e 2 , . . . ) (instead of nodes). Then, the chances to 

rogress forward by a lot of n = 0 , 1 , 2 , . . . steps is no longer Pois-

on distributed; rather, assuming stochastic independence of ex- 
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Fig. 2. Attack Graph from Singhal and Ou (2011) used in Rass et al. (2019) to play 

Cut-The-Rope , showing only the topology, but no technical details. 
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loits, the chances to take n = 0 , 1 , 2 , . . . steps are 

f N (n ) = (1 − q (e n +1 )) ·
n ∏ 

k =1 

q (e k ) , (11) 

.e., the probability to succeed with exactly n exploits, and to fail 

n the (n + 1) st step on the attack path. This function then goes

nto (2) and (3) to instantiate the game under the setting described 

ere. A unit of time is, again, the period between two appearances 

f the defender in the system, again taken as fixed and constant 

ver time (e.g., one day, one week, etc.). 

.3. Checks with random intervals (“exponential Strategy”) 

If the defender becomes active at its own random (Poisson) rate 

D , the attacker will be able to take a Pois (λ) -distributed num- 

er of steps in an exponentially distributed pause time controlled 

y the defense intensity λD . This defense regime defines a random 

nit of time , whose long run average is exactly λD . 

This change of the setting amounts to a humble change of 

he Poisson distribution into a geometric distribution, because: we 

ow have two types of events to consider, which are activity of the 

ttacker at rate λ and activity of the defender, at rate λD . Within 

 unit of time, we will thus have a number k A of attack events,

s. a number k D of defense actions. So, the likelihood of the de- 

ender to become active is (frequentistically) approximated as p = 

 D / (k A + k D ) = 

1 /n ·k D 
1 /n ·(k A + k D ) for all n > 0 . The last term, however is

he average number of events per n time units, which upon n → ∞
onverges to λ for k A /n and to λD for k D /n . Thus, the probability

or an action to be taken by the defender is p = λD / (λD + λ) , and

he number of trials that the attacker can take until the defender 

ecomes active again is a geometric distribution with that parame- 

er p. Conceptually, the model thus remains unchanged, except that 

he attacker’s step number is now computed using the geometric 

istribution density with the given rate parameter. Consequently, 

e have 

f N (n ) = p · (1 − p) n with p = 

λD 

λD + λ
(12) 

n (2) and (3) . 

.4. Spot checks with random intervals and probabilistic success on 

xploit 

Unlike before, we now consider a fixed unit of time , in which an

xploit for a given vulnerability can be tried. The defender comes 

ack in random intervals, measured in the this (fixed) unit of time, 

nd has an average return time of λD . Consequently, the time win- 

ow for the attacker to run exploits is an exponentially distributed 

andom variable W ∼ Exp(λD ) . Within this time window W , the 

ttacker ought to accomplish n exploits, along an attack path 

= θ → w → w → . . . v , in the notation of Section 2.2 . Like in
1 2 0 

6 
ection 3.2 , let us call e k the edge into node v k , which carries a

nown exploit complexity as the quantity q (e i ) = Pr (exploit on e i 
s successful within a (fixed) unit of time). Then, an exploit on 

dge e i takes an exponentially distributed time T i ∼ Exp(1 /q (e i )) . 

he total time for n exploits is thus T 1 + T 2 + . . . + T n , which, unfor-

unately, does not admit a closed analytical expression for its dis- 

ribution, since the values can be assumed independent, but not 

dentically distributed. To escape the issue, we simplify matters by 

ssuming the avatar to move at a uniform velocity along the at- 

ack path, instead of being faster and slower depending on the at- 

ack complexities. We believe this assumption to be mild, since our 

ain concern is the time it takes to reach the end v 0 anyway, and

e are not as much interested in determining the avatar’s location 

nywhere in the middle of the attack path. 

This simplification comes to a geometric mean of the probabil- 

ties 

 = geomean { q (e i ) | e i is on the chosen attack path } . 
he point is that the product of the actual probabilities, i.e., 

he chance to hit v 0 , remains unchanged hereby, since 
∏ 

i q (e i ) =
 

| V (π ) | where | V (π ) | is the length of the attack path. Let us put 

π := 1 / q to bring the notation closer to that of Section 3.3 , since

he result (to come later) will also be close to this previous finding. 

he subscript π to λπ herein reminds about the attack rate now to 

epend on the chosen path. 

Under this simplification, the time for n exploits is the sum 

f all identically Exp(1 / q ) -distributed random variables E n := T 1 + 

 2 + . . . + T n ∼ Erl(λπ , n ) that is Erlang distributed. We are inter- 

sted in the probability of T 1 + T 2 + . . . + T n ≤ W , which is a matter

f computing a convolution integral. We shift the algebraic details 

o the appendix, and directly give the result here: 

f N (n ) = 

{
Pr (E N ≤ W ) = 

(
λπ

λπ + λD 

)n 
n ≥ 1 ;

Pr (E 1 > W ) = 1 − Pr (E 1 ≤ W ) n = 0 . 
(13) 

bserve that this is movement pattern is like in Section 3.3 , which 

s yet another geometric distribution, only with the different pa- 

ameterization. 

The approach of geometric averaging over the entire attack path 

eserves a bit of discussion: we could equally well average only 

cross the segment of length n that the attacker targets to over- 

ome, and/or exclude all exploits with q (e k ) = 1 from the averag-

ng. We refrained from both these options for two reasons: first, 

emoving the 1es from the averaging would unrealistically shorten 

he attack path to less than its physical reality. Even if an exploit 

as a 100% chance to be used within short time, there is nonethe- 

ess a time step necessary to do it, so including it in the geometric 

ean seems plausible. An attack path that is longer will, despite 

he same product probability of accomplishing it, take a propor- 

ionally longer time to traverse. Second, concerning the focus on 

nly a segment, this may miss the actual intention of the adver- 

ary, since it targets the end of the attack path, and not only a 

pecific segment. In other words, geometrically averaging only over 

he first k exploits would be the assumption that the adversary 

ould stop at the k th step, even if there is time left before the de-

ender comes back. Since the target is getting to the end of π , it

ppears plausible to include all exploits towards this end. 

. Case studies 

We dedicate the next couple of subsections to numeric results, 

tarting with a brief correction to past calculations in the litera- 

ure, and then moving onward to the new case studies and the 
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omparison of defense policies optimized with Cut-The-Rope , ver- 

us a heuristic common-sense defense policy. 6 

To assess the game w.r.t. a real-life application, we conducted 

wo case studies on the industrial robots in Section 4.3 . The game 

s similar to capture-the-flag competitions known in ethical hack- 

ng, since there and also here, the goal is to “capture” a target as- 

et v 0 . Our analysis, different from ethical hacking, is purely game- 

heoretic and optimization-based here. 

.1. Implementation remarks 

We adapted the implementation from Rass et al. (2019) and 

hereby discovered a few bugs in this older code that we cor- 

ected in our version. 7 The original code used fictitious play on 

he full distribution U = (u 1 , u 2 , . . . , u n = Pr (adversary reaches v 0 ))
btained from Eq. (5) . We compute an optimum U 

′ w.r.t. a lexico- 

raphic order from right to left, first minimizing the last coordi- 

ate u n , and breaking ties by continuing to minimize u n −1 while 

eeping u n at minimum. The next tie is broken using u n −2 , while 

eeping the so-far optimized coordinates at their minima and so 

n. This introduces a dependence on the ordering of the coordi- 

ates, corresponding to a likewise ordering of locations in the at- 

ack graph. Therefore, the solution returned by the implementation 

rom Rass et al. (2019) is ambiguous in the sense of depending on 

he node ordering. 

The optimization, however, independently of the node order, al- 

ays minimizes the chances to reach the target asset, and hence 

rovides a valid defense policy w.r.t. the targets of the defender. 

ur implementation inherits this dependence on the node order, 

ut since our sole interest is reaching or avoiding to reach v 0 any- 

ay as (7) and (8) define, this ambiguity is not a limitation. In light

f this, we chose the graph-topological sorting to order the prob- 

bilities in U 

′ other than for v 0 , which is the last element in this

ector. 

The attack graphs for our robot case studies have several entry 

oints for the attacker and also several targets to reach. To han- 

le them all in a single run of the analysis, we added an artificial

virtual) entry node from which all (real) entry nodes are trivially 

eachable (with probability 1). Since Cut-The-Rope in the original 

ersion, analyzed here, assumes only one target, we contracted the 

ultitude of target nodes into a single “compound” target node. 

his corresponds to the target being to reach any of the possible 

arget nodes, not distinguishing which in particular. A target node 

s, by default in our implementation, any node that does not have 

escendants (zero out-degree in the attack graph). Consequently, 

ll inner nodes, except the virtual start, are possible defense spot- 

heck locations. The technical simplification towards having one 

arget (only) is to avoid multi-criteria optimization, which is theo- 

etically possible (even supported by the packages to run the op- 

imization practically), but is more involved to interpret for a de- 

ense policy. 

.2. The example from Rass et al. (2019) 

To soundly align with past results, we first reproduce the ex- 

mples from the original reference ( Rass et al., 2019 ) propos- 

ng Cut-The-Rope . Figure 2 shows the attack graph from 

ass et al. (2019) in a more compact form: the battlefield is an at-

ack graph constructed for a network with one desktop computer, 
onnected to a switch that also serves a file- and a database server. 

6 The full code is available for download at https://github.com/jku-lit- 

csl/ComputersAndSecurity_RoboticsCaseStudies_Cut-The-Rope.git 
7 The full code is available for download at https://github.com/jku-lit- 

csl/ComputersAndSecurity_RoboticsCaseStudies_Cut-The-Rope.git 

a

n

m

n

w

7

he connection from the desktop machine is protected by a fire- 

all. The respective attack graph, whose full details are found in 

inghal and Ou (2011) , is here represented by a directed acyclic 

raph: its nodes correspond to possible physical or logical loca- 

ions of the intruder, corresponding to nodes of the attack graph. 

irected edges are – in our example – labeled by exploits, say, e i, j , 

o mean that some exploit (e.g., a buffer overflow, remote shell ex- 

cution, etc.) is necessary to get from location i to location j in the 

ttack graph (others, not all of them, appearing simply as “e ” to in- 

icate their presence on all links in the graph without overloading 

he picture). Two designated nodes, shown in gray in Fig. 2 mark 

he entry point for the attacker (the desktop PC), and the adver- 

ary’s target node (here, the database server), denoted as v 0 . 
For a deeper insight into how much a defense based on Cut- 

he-Rope can offer, we first tried to reproduce the results from 

he original work ( Rass et al., 2019 ), thereby discovering a calcu- 

ation error in how the paths were implemented in the code (in 

etail, three paths had nodes on them towards which there was no 

dge in the graph that Fig. 2 displays). Correcting these issues in 

he code, and running it again (under the current setting), we ob- 

ained slightly different results than ( Rass et al., 2019 ): the optimal 

rotection in case that the defender can spot everywhere is like- 

ise to protect node 7 © (thus confirming the defense computed in 

ass et al. (2019) ), but the most likely attack paths were different. 

iven that these are hypothetical anyway, the important finding 

ies in the defense recommendation, which, despite past code er- 

ors, was nonetheless correct in Rass et al. (2019) . The results were, 

owever, largely different if the defender’s action set is restricted 

o guarding only some FTP connections (specifically guarding at lo- 

ations 2 ©, 5 ©, 6 ©, 8 © and 9 © only), recommending the optimal de- 

ense to be on nodes 6 © and 9 © with probabilities ≈ 54 . 91% and 

45 . 09% , leaving a residue chance of ≈ 12 . 4% for the attacker to

each the target v 0 . 

.3. Robot case studies 

For both of the robot cases to follow, we give computational re- 

ults and a discussion of their practicality. To avoid confusion be- 

ween the attack graphs appearing here and those found in the 

ited literature, we use the original versions thereof to visualize 

he battlefield and results. The actual simulation was done on an 

ttack graph with added virtual starting and a single compound 

arget node (if more than one exists). 

It is perhaps practically interesting to remark that both attack 

raphs have inner nodes that classify as attack targets, but have 

escendant nodes as subsequent attack targets. With the conven- 

ion of taking nodes with zero out-degree in the graph as targets 

see Section 4.1 ), the simulation will include all “inner” nodes as 

efense locations even though they may be attack targets too. This 

s not precluded by the game design, and may be interpreted as 

onsidering inner nodes as “intermediate targets” whose preven- 

ion may avoid subsequent final, perhaps more dangerous, attack 

argets. The game’s defense policy would then advise to prevent a 

ertain attack sub-target in the attack graph, with a certain level of 

ffort (expressed as likelihood). From a simulation perspective, in- 

luding or excluding any node from the defense policy is a simple 

atter of defining the action set for the defender accordingly. 

.3.1. Case #1: modular articulated robotic arm (MARA) 

MARA is a collaborative robotic arm with ROS 2.0 in each actu- 

tor, sensor or any other representative module. Each module has 

ative ROS 2.0 support, can be physically extended in a seamless 

anner and delivers industrial-grade features including synchro- 

ization, deterministic communication latencies, a ROS 2.0 soft- 

are and hardware component life-cycle and more. Altogether, 
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ARA empowers new possibilities and applications in the pro- 

essional landscape of robotics. The use case considered contem- 

lates the MARA modular robot operating in an industrial environ- 

ent while performing a pick & place activity. Details about MARA 

or this case study can be found in AcutronicRobotics (2021) ; 

lias Robotics (2019) . 

.3.2. Case #2: MiR100 - Mobile industrial robotics 

The MiR100 autonomous mobile robot is advertised as a safe 

nd cost-effective mobile robot that quickly automates your in- 

ernal transportation and logistics. The robot claims to opti- 

ize workflows, freeing staff resources so you can increase pro- 

uctivity and reduce costs. A case study analyzing the cyber- 

esilience of MiR100 robots was conducted and documented at 

lias Robotics (2020) and Alias Robotics (2021) , which considered 

 single robot operating in a structured environment while con- 

ected to a local area network that gets compromised. Through 

he local area network, prior work demonstrated how an attacker 

ould exploit vulnerabilities, pivoting across subsystems in the 

obot all the way into its safety system, disabling it fully in a re-

ote manner. 

For both robots, we took attack graphs out of industrial secu- 

ity assessments, which, in the particular case of MiR100, were 

lso annotated with Common Vulnerabilities and Exposures (CVE) 

nd CVSS information, which allows an assessment of the “hard- 

ess” of vulnerabilities along the attack path. Such annotations 

ere not available for the MARA use case, which, in lack of such 

etails, suggests an application of the Poissonian movement pat- 

ern of Section 3 . The more detailed attack graph for the MiR100 

obot enables the consideration of probabilistic success on exploits 

s Section 3.2 described. 

. Results and comparison 

To evaluate how much a game-theoretic defense may add to 

he security, we do not only give the absolute results from the 

imulations, but also compare them to a heuristic best-effort de- 

ense policy, described in Section 5.1 . Its simulation is run likewise 

ith each of the four movement patterns from Sections 3 , with 

he probability to reach v 0 given for each case as (i) optimized by 

ut-The-Rope versus (ii) according to a best-effort defense. 

.1. Baseline comparison: a best-effort defense policy 

For an assessment of the quality of the game-theoretic defense, 

et us use the following heuristic defense policy to compare: 

• We assume that an adversarial avatar will always follow the 

shortest, or “easiest” attack path towards v 0 . The distinction be- 

tween shortest and easiest is made in dependence of how much 

is known about exploit complexities. In the MARA use case, the 

path choice will be for shortest, in terms of the number of ex- 

ploits, since there is no further detail given about the exploit 

complexities. In the more detailed MiR100 use case, we have 

attack complexities and can likewise apply a shortest path algo- 

rithm to guide the attacker to the path whose success probabil- 

ity (as the product of all exploit success probabilities) is maxi- 

mal. 8 

• The defender, unbeknownst of where the attacker is, and un- 

able to actively detect it, applies a uniformly random defense 

strategy. That is, if the attacker is equally likely to be anywhere 

in the system, the defense policy would likewise be a uniformly 

random spot checking. 
8 The usual trick of assigning the negative logarithm of probabilities as edge 

eights and computing a shortest path in the well known way 

e

a

o

s

8 
Under these hypotheses, we apply the same mechanism as in 

ut-The-Rope , i.e., we let the attacker follow its chosen (short- 

st/easiest) path, and be occasionally sent back by the defender 

pon a coincidental cut of the path equivalently, closure of any 

ackdoor. If so, then the avatar will keep retrying, until it hits the 

nal target v 0 . Note that this regime also includes lateral move- 

ent, since we still have a multitude of avatars attacking in paral- 

el, each on its individually optimal route from its starting location 

towards v 0 . 
We implemented this defense policy simulation by adapting the 

ode from the implementations of Cut-The-Rope accordingly, to 

mplement the heuristic defense and attack policy of above. Like 

or the game optimization, the heuristic defense implementation 

utputs the probability to reach v 0 by simulating this defender- 

ttacker interaction. We remark that this heuristic defense may 

till be overly optimistic relative to real life situations, in which 

efense teams may have only an incomplete view on the at- 

ack graph G = (V, E) . The defender would thus only be active 

n a subset D ⊂ V , so that all nodes in V \ D would be zero-day

xploits. 

.2. Overview of experiments 

In total, comparing the periodic/exponential defense strategy 

gainst a randomly moving adversary in two use cases, gives a to- 

al of 4 evaluation scenarios, each accompanied with its own com- 

arison to the baseline heuristic of Section 5.1 . Table 1 relates the 

ections and figures in the following to these four configurations. 

.3. MARA: results 

The attack graph for the MARA robot is taken from 

cutronicRobotics (2021) and shown in Figs. 3 and 4 . This graph 

as 11 nodes and 10 edges in total, among them one entry point 

node 1 ©) for the attacker, and two targets (nodes 6 ©, and 9 ©). 

We played Cut-The-Rope on this graph with a periodic de- 

ender versus an attacker that takes an average of 2 moves per 

ime unit (i.e., in-between two appearances of the defender, e.g., 

er day). Figure 3 shows a table with the probabilities to spot- 

heck each node on the attack graph. For the visualization, we 

ave put bubbles on the attack graph, whose size corresponds 

o the probability of spot-checking there. That is, the larger the 

ubble, the more effort should be out on defending at this 

oint. 

Turning to the case of the defender coming back in random 

ime intervals, we let the game run in three configurations, with 

he defender moving slower ( λD = 1 < λ), at equal speed ( λD =
= 2 ) and faster than the attacker (λD = 3 > λ) in (12) . The re-

ulting spot checking probabilities are again displayed as bubbles 

ocated at the respective nodes in the attack graph, and put over 

ne another in Fig. 4 . 

The numbers and bubbles are almost of the same size, show- 

ng that for the defense locations, the speed of spot checking has 

nly a negligible impact, while the performance of the defense ac- 

ordingly becomes better if the defender is “more active”. The per- 

ormances of the defense policy as displayed in the bottom table 

f Fig. 4 show that the optimized defense pays over the heuristic 

blind” spot checking policy. 

The takeaways from these findings is not that a more intense 

efense activity will reduce the chances of the attacker (this would 

e obviously the case), but rather giving the defender an indication 

f where to allocate its (limited) resources to gain the best possible 

ffect. Without signaling and without additional information in the 

ttack graphs, the results are necessarily a crude approximation 

f reality, and Cut-The-Rope has been designed to be workable in 

uch a situation of limited information, as well as with cases when 
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Table 1 

Overview of experiments. 

Use case \ defender’s policy Periodic Exponential strategy 

MARA (no particular exploit hardness attacker movement model: Section 3.1 attacker movement model: Section 3.3 

annotations), Section 5.3 results shown in: Fig. 3 results shown in: Fig. 4 

MiR100 (known exploit complexities attacker movement model: Section 3.2 attacker movement model: Section 3.4 

to consider), Section 5.4 results shown in: Fig. 5 results shown in: Fig. 6 

Fig. 3. MARA use case results for periodic spot checks ( Section 3.1 ). 
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ore details are available, such as for the MiR100 robot following 

ext. The results in the rather little detailed MARA use case are 

uite evident but therefore also plausible (“guard the closest graph 

ut between the asset and the defender”). The nontrivial indica- 

ion here is the advice to let the attacker come “close” to the as- 

et, while a defender would perhaps otherwise try to guard the 

uter perimeter of the system to keep the intruder out in first 

lace. The optimum to be at the closest graph-cut towards the 

sset is here explainable by our assumption that the attacker is 

tealthy and can start from anywhere, and in a practical situa- 

ion, the defender may indeed have no reliable information about 

nfected parts (otherwise, it would be trivial to disconnect and 

epair/replace the malfunctioning component). The defense pol- 

cy that Cut-The-Rope computes is for practitioners operating blue 

eams that need to protect a large attack surface with no mon- 

toring or signaling. A game-theoretic defense can help prioritize 

esources. 
9 
.4. MiR100: results 

Similarly as for MARA, we used an attack graph for the MiR100 

obot as shown in Figs. 5 and 6 . The attack graph has 16 nodes and

4 edges. The attacker can enter at four points (nodes 1 ©... 4 ©), and 

our targets ( 12 ©, 13 ©, 14 © and 16 ©). 

We conducted the likewise experiments under the same con- 

gurations as for the MARA use case, but this time making use of 

he CVE annotations to give information on how hard it is for the 

ttacker to mount an exploit. For the defender, we again assume 

his one to be periodically active (as in Section 3.1 ) and to ran-

omly spot check (as in Section 3.4 ). Note that in this case we do

ot have an attack rate λ as for the MARA use case before, since 

he movement of the attacker is solely governed by the difficulty 

o mount exploits. 

It is interesting to note that the optimal defense policy does 

ot advise to guard node 7 © or 9 ©, which is a way towards reach- 
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Fig. 4. MARA use case results for spot checks at random intervals ( Section 3.3 ). 
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ng goal node 16 ©. This may be assumption of the game, of the at- 

acker already being somewhere in the network. The defense pol- 

cy accounts for this and hence does not put more weight on lower 

odes with higher incidence index. This way, the model accounts 

or defense in depth rather than entry prevention. 

Finally, let us turn to the case of the adversary working towards 

 0 only in random time intervals between two appearances of the 

efender. This time, the defender’s parameter λD is the average 

window size” W (see Appendix B ), measured in units of time, e.g., 

ays. It is the time that we give the attacker to mount activities in

he game. The results are shown in Fig. 6 . 

Similar as for the MARA use case, the defense locations are the 

ame in all cases, with the defense effort s only slightly differing 

ccording to how large the window is for the attacker, respectively, 

ow frequently the defender comes back. The performance of the 

efense is shown in the bottom table of Fig. 6 . Consistent with the

ntuition, the attacker’s chances to reach v 0 become larger if the 

efense window is made larger. In both, the experiments with the 

euristic defense and optimized under Cut-The-Rope , the value λD 
10 
ives the average number of time units before the defender comes 

ack. That is, larger λD give the attacker more time to exploit (con- 

ersely to the interpretation of λD in the other experiments, where 

t was the frequency of the defender’s return). Again, the experi- 

ents show that Cut-The-Rope outperforms the heuristic defense 

onsiderably. 

. Related work 

APTs, like most targeted attacks conducted by cybercriminals, 

ue to their diverse combination of attacks, hardly admit a sin- 

le model to capture them; rather, they call for a combination of 

odels designed for different aspects or characteristics of the at- 

ack. Game-theoretic defense models may be distinguished accord- 

ng to the nature of APT ( Rass et al., 2020 ) that they cover: there

s the parasitic type, in which the attacker tries to steal resources 

or as long and much as possible, but does not aim to kill its vic-

im. Related models are FlipIt ( van Dijk et al., 2013; Zhang and 

hu, 2019 ) and its descendants. Minimizing the total time that the 
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Fig. 5. MiR100 use case results for periodic spot checks ( Section 3.1 ). 
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ttacker spends in the system may not necessarily minimize dam- 

ge too, since the attacker may entirely destroy the asset v 0 even 

ithin a very short period of time. The defender may nonetheless 

uffer a permanent defeat (upon loss of v 0 ). For example, if the at-

acker can gain access to the security controls of a nuclear power 

lant even for a very short time, this may be sufficient to cause 

n unstoppable meltdown. Conversely, the attacker may spend a 

onsiderably larger amount of time in other areas of the nuclear 

ower plant’s system; as long as there is no vital subsystem to fid- 

le with, the damage to the infrastructure may be bearable. This 

otivates the consideration of the second type of APT, for which 

he game model Cut-The-Rope is tailored to: there, the attacker 

ims to kill the victim and silently prepare the final blow. A docu- 

ented case of this is Stuxnet ( Kushner, 2013 ), and Cut-The-Rope 

s a game model designed for this latter type. 

Many other game models are aligned with the phases in the 

ill chain, and most related work ( Etesami and Basar, 2019 ) is spe-
11 
ific for at least one of them. We note that the ADAPT project 

 ADAPT, 2018 ) covers a wide spectrum of aspects and phases here. 

pecific defense models include the detection of spying activities 

 Qing et al., 2017 ), tracing information flows ( Moothedath et al., 

018 ), detection of malware ( Khouzani et al., 2012 ), deception 

 Carroll and Grosu, 2009 ) also via honeypots ( La et al., 2016 ), at-

ack path prediction ( Fang et al., 2014 ), path selection to support 

alware detection in distributed networks ( Panaousis et al., 2017 ), 

nd general network defense ( Alpcan and Basar, 2010 ) to name 

nly a few. Our game is in a way similar to that of the seminal

ork ( Lye and Wing, 2005 ), yet differs from this previous model in

ot being stochastic, and in using payoffs that are not real-valued. 

he stochastic element is included in a much simpler way in our 

odel, yet preserving information about uncertainty in a full dis- 

ribution, to avoid losing information by averaging out randomness 

for example, replacing a random payoff by a real-valued expected 

ayoff). 
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Fig. 6. MiR100 use case results for spot checks at random intervals. 

m  

p

w

w

o

i  

d

a

g

i

o

s

p

(  

o  

h  

d

d

t

v

c

l

m

g

e

2

o

f

k

i

t

t

t

Since the methods applied here come from the risk manage- 

ent field, this relates our work to that of Yang et al. (2018) , who

resents a framework to optimally respond to a detected APT. Their 

ork is thus an a posteriori treatment after the APT succeeded, 

hile ours complements the risk management here by an a pri- 

ri treatment to prevent the APT from success. Likewise notable 

s also the work of ( Hota et al., 2018; 2016 ), who consider inter-

ependency graphs in relation to attack graphs in a game-theoretic 

nalysis of targeted attacks. Their work adds constraints to bud- 

ets or desirable risk levels, and is specifically about investments 

n defenses of nodes and edges, but also works with crisp pay- 

ff measures (such as, e.g., paths of maximal attack probability or 

imilar). 

A different classification of related work is based on the 

rotection targets. defenses can be optimized for confidentiality 

 Lin et al., 2012 ), the monetary value of some asset upon theft

r damage ( Zhu and Rass, 2018 ), or the time that an adversary

as parts of the system under control ( van Dijk et al., 2013 ). This
12 
istinction can be important depending on the context, as in- 

ustrial production typically puts priority on availability and in- 

egrity, with confidentiality as a secondary or tertiary interest. Con- 

ersely, whenever personal data is processed, confidentiality be- 

omes the top priority, putting availability further down on the 

ist. 

The techniques applied to capture and defend against APTs are 

anifold, but in most of these (like in our work), the network 

raph is in the center of attention: it may define how an attack 

volves as a dynamical system ( Senejohnny et al., 2018; Yang et al., 

019 ) inside the graph topology, with the challenge of optimized 

rchestrated defense. A good defense design that needs to account 

or new vulnerabilities potentially being opened up when closing 

nown security holes. The work of Touhiduzzaman et al. (2019) , 

n this regard, utilizes a game model for graph coloring for a sys- 

ematic and optimized defense, applying these results to indus- 

rial bus systems. Another dynamic yet queuing-based model is 

hat of Li et al. (2019) , which like our model computes optimal 
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esource allocations by the defender and attacker, as an aid for 

ecision making. Tailoring the attack model more closely to the 

pplication domain for the sake of a more accurate description, 

he work of Soltan et al. (2019) provides insightful connections 

f graph topological properties of a power grid, and how areas in 

anger of becoming attacked are identifiable from analyzing the 

raph. 

The work of Pawlick et al. (2019) ; Pawlick and Zhu (2017) takes 

 more birds eye perspective on the domain of the internet of 

hings (IoT), and applies it directly to or varies the FlipIt game (see 

he references above and Zhang and Zhu, 2019 ) to model individual 

arts of a cloud-based IoT infrastructure, combining these submod- 

ls into a larger hybrid game model that allows certain equilib- 

ia to play optimally against the adversary. Another cloud-related 

nd -specific APT defense model is Yuan et al. (2019) . Like us, they

dopt a leader-follower model, but different to our work, they use 

 Stackelberg equilibrium concept. 

Taking the APT as a long term yet one-shot event, an attack 

raph can be treated as a (big) game in extensive form. From this 

oint of view, it is possible to think of the APT as an instance

f the induced gameplay, to which Bayesian or subgame perfect 

quilibria can be sought ( Huang and Zhu, 2018 ). More similar to 

his work, we can treat the APT as a game of inspections, to dis- 

over optimal strategies of inspection in different depths of a shell- 

tructured defense ( Rass and Zhu, 2016; Zhu and Rass, 2018 ). An 

spect of strong relevance concerns the use of probabilities: the 

ork of Hota and Sundaram (2018) ; Xiao et al. (2018) are most 

nteresting in its account for subjective probability and prospect 

heory, since this includes the way of how humans bring in their 

ndividual risk attitudes in decision making under uncertainty (es- 

ecially about defenses). We avoid this conceptual and practical 

ifficulty in the modeling by designing our game with as few prob- 

bilistic parameters as possible. 

Cut-The-Rope is, in two ways, different from most other game- 

heoretic models: first, it can let the players act in different time 

xes, meaning that the defender can be active in discrete or con- 

inuous time, while the attacker is (here always) acting in contin- 

ous time. This is in contrast to most other models in which both 

layers act in fixed schedules (such as in extensive form games), or 

oth can take actions continuously (such as in differential games). 

he second aspect is the added suggestion of tie-breaking if there 

re several equilibria. Cut-The-Rope implicitly addresses the equi- 

ibrium selection problem by refining the set of possibly many 

efense actions based on the probabilities to reach not only v 0 , 
ut also to get nearby it. Formally, the optimization, after hav- 

ng minimized the chance to conquer v 0 , continues by minimiz- 

ng the chances to reach a node close to v 0 . As mentioned in

ection 4.1 this induces a dependency on the ordering of nodes, 

ut this ordering is up to the choice of the defender setting up the 

odel. In any case, the defender is not left with a choice among 

ossibly many equilibria, but can have the calculation automat- 

cally refine it in an interpretable sense. This equilibrium selec- 

ion problem is not usually intrinsically addressed in other security 

ame models. 

Among the related work on attack graphs, two major types are 

tate-enumeration and dependency attack graphs. The difference 

s, weather full states or attributes are used. There are also for- 

alisms based on the network assets, such as host-based or host- 

entered attack graphs, whenever the focus is on the assets. An- 

ther frequently accounted high level categorisation is according 

o exploit- or condition-orientation of the nodes (involving logi- 

al connectives, such as AND/OR nodes). A well-written review is 

allie et al. (2020) . 

Various attack graph formalisms involve multiple parameters as 

ntrinsic components of the graph model, such as (success) prob- 
13 
bilities. These can be used for quantitative security analysis, to 

dentify minimal sets of mitigations by hitting sets, graph cuts and 

inimal exploit sets ( Jha et al., 2002 ). Along these lines, logical 

nalyses towards enumerations of security violations, and combi- 

atorial optimizations for finding minimal sets of components to 

harden” are enable the generation of automated recommendations 

nd rankings of vulnerabilities and assets ( Shandilya et al., 2014 ) 

e.g., using Google’s PageRank algorithm Mehta et al., 2006 ). A nat- 

ral extension to this is the inclusion of uncertainty by leveraging 

ayesian reasoning and optimizing cost-benefit tradeoffs between 

xploit mitigations and resulting risk reductions ( Zeng et al., 2019 ). 

his is not only to recommend mitigations, but to do so under eco- 

omic aspects of efficiency or cost for the defender. Using a combi- 

ation of logical conditions and combinatorial optimization, recent 

ork ( Wang et al., 2014 ) also proposed extending attack graphs 

ith zero-day exploit edges. Besides ranks of assets, single vulner- 

bilities or criticality of attack paths, a variety of further security 

etrics is computable from attack graphs ( Zenitani, 2023 ), for ex- 

mple, exploitability (e.g., average of CVSS scores), risks of exploits 

epending on the graph size, number of exploits relative to the 

otal possibilities for the network to become compromised, num- 

er of unique vulnerability types referred to by explicit exploits, or 

arious graph-theoretic scores, such as minimum, maximum and 

verage of path lengths, number of length of cycles (or (a)cyclicity 

f the graph itself, thereby computing recommendations to deal 

ith cyclic structures inside the graph), as well as the statisti- 

al distributions of these values. For models considering the graph 

s a Markov (decision) process, values like the conductance may 

e interesting in determining how quickly a stationary distribu- 

ion will be reached, and to subsequently optimize the chances for 

he defender or attacker to succeed. The game theoretic model in 

his work follows the same goals, but using different methods of 

ptimization. 

. Discussion 

The experimental findings suggest that the apparent optimal 

efense strategy delivered by Cut-The-Rope is to guard the im- 

ediate neighborhood of the target asset, so as to cover cases 

here the attacker has already deeply penetrated the system when 

he game begins. Indeed, an analytic characterization of the op- 

imal defense under Cut-The-Rope is obtained in Appendix A as 

roposition 5 . It confirms a certain graph cut to be optimal un- 

er certain assumptions, but not in all of our test cases. For this 

eason, we leave the discussion of analytic results as an appended 

emark here, and continue the discussion with more practical 

spects. 

.1. Incomplete attack graphs and zero-day exploits 

The heuristic defense of Section 5.1 may in reality be still over- 

ptimistic, in its assumption of complete knowledge about the at- 

ack graph. Practical defense teams may only have a limited knowl- 

dge or possibility to construct the entire attack graph, and it 

s generally unaccomplishable for the defender to get exactly the 

ame attack graph as the adversary has. The simulations imple- 

ented in this work have been made with the possibility to in- 

lude only a randomly chosen subset of nodes in the defender’s 

ossibilities to spot check, so include such incomplete knowledge 

n the analysis. Concretely, the code was made to randomly re- 

uce the defender’s spot check locations to, for example, only 75% 

f the nodes in the attack graph. Under such reduced possibili- 

ies, the game runs against an attacker with more, i.e., full, knowl- 

dge about the attack graph. We confine ourselves here to re- 

orting that the defense policies performed worse than under full 
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nowledge (not surprisingly), but both policies ( Cut-The-Rope and 

he heuristic) lost performance at approximately equal magnitudes, 

eaving their relative quality over one another without substantial 

hanges. 

We emphasize that a simulation under such reduced knowl- 

dge for the defender, whereas giving the attacker full knowledge, 

an be viewed as a study of the impact of zero-day exploits used 

y the attacker. That is, any node excluded from the defense, but 

sed by the attacker is nothing else than a zero-day vulnerabil- 

ty. Since a systematic account for this would be beyond the scope 

and space limits) of this work, we will explore this route along fu- 

ure work. A promising possibility, besides adding zero-day edges 

mplied by logical conditions ( Wang et al., 2014 ), we may change 

he perspective towards services rather than exploits. Given a table 

f mutual dependencies of distinct services or applications (which 

s a common step in a risk management processes to identify de- 

endencies and assess the criticality levels of services and applica- 

ions), an attack may – abstractly – be considered as a disruption 

f a service that subsequently causes disruptions of dependent ser- 

ices. In turn, this also means that there would be ways in which 

 dependent service has access to a parent service, so that there 

ould be an edge between these two. So, we may also obtain an 

ttack graph by letting the nodes be services or applications, and 

rawing edges whenever a node depends on another node, follow- 

ng the intuition that “some exploit” on a node may, via their in- 

eraction, lead to access or some control over the neighboring node 

n the dependency graph ( Cao et al., 2018; Fang et al., 2022 ). Play-

ng the game on so-constructed graphs appears worth exploring in 

uture research. 

Constructing attack graphs in an automated fashion is consid- 

red via multiple methods, among them logic-based model check- 

rs to enumerate conditions of security violations ( Jha et al., 2002 ) 

r treating the graph as an automaton and analyzing it for paths 

hat yield into conditions that violate security ( Wang et al., 2012 ). 

urther techniques leverage machine learning to craft attack pat- 

erns or online-learn the attack graph ( Zeng et al., 2020; Zeni- 

ani, 2023 ). A practical difficulty of building attack graphs espe- 

ially for highly distributed systems such as (many) robotic sys- 

ems are, makes applications of machine learning and automated 

ttack graph algorithms particularly attractive in our context. Com- 

ined with automated network scanning methods, the problem is 

ne of system identification and repeated updating of the model. 

he game theoretic analysis assumes a “static” battlefield to ana- 

yze the best defense at the current moment, and we can re-run 

he analysis after every change of the attack graph. Such updates 

re naturally implied by any (cyclic) risk management process, and 

ppendix C discusses the embedding of our analysis inside a cycle 

f risk assessment, -analysis, -mitigation (based on the analysis), 

nd re-assessment of risks after a change of the threat landscape 

i.e., the attack graph). 

.2. Cutting the rope vs. changing the attack graph 

In our experimental instance of the game, we let the attack 

raph remain unchanged over time. In particular, we assume that 

one of the defender’s actions causes a permanent removal of a 

ertain backdoor. This is practically motivated by the fact that spot 

hecking may remove some, but not all vulnerabilities, so that, for 

xample, one buffer overflow vulnerability in a secure shell imple- 

entation might get fixed, but other exploits of the same kind re- 

ain open, making the respective nodes remain unchanged in the 

raph after an inspection. Likewise, remote shell access may be re- 

uired for the business workflow and hence cannot be deactivated, 

ut only the access credentials might be updated. In that case, 

he remote shell access exists before and after an inspection. Even 
14 
hough the game model itself uses a static attack graph, this one 

ay itself require an update from time to time upon changes in 

he infrastructure. This is part of the business continuity manage- 

ent related to security, and accordingly changes the action sets 

or the defender and attacker. The implementation of the game, 

owever, remains unaffected, except for the specification/input of 

he attack graph. We close the discussion at this point, referring to 

ppendix C for a continuation of this discussion. 

.3. Further generalizations 

The movement patterns as studied in this work admit further 

odifications and generalizations, yet to be explored, such as: 

.3.1. Probabilistic success on spot checks 

First, to the advantage of the attacker, suppose that the de- 

ender is not necessarily successful on wiping out the adversary 

nside a node c, which may the more “probable” case in an en- 

erprise or embedded network. It is not difficult to generalize the 

odel towards this: If we write p c for the likelihood to actually 

ut the rope at c ∈ V upon trying so, (5) becomes a mix of cut and

ncut paths, 

r ( adversary ′ s location = v ) = 

p c · Pr ( adversary ′ s location = v | V (π | c )) 
+ (1 − p c ) · Pr ( adversary ′ s location = v | V (π )) , 

nd (5) is defined alike by the entirety of all these values for all 

 ∈ V . Thus, the computation as such does not change, only the 

ode needs to use the above formulas to compute the payoffs. If 

he probabilities are made conditional on the system state, the 

nalysis can be made to account for changing system conditions 

oo. We leave this route unexplored due to space limitations here. 

.3.2. Multiple adversarial targets 

Cut-The-Rope may be modified towards a multi-criteria game, 

reating all target nodes as individual targets in the game. The 

oncept of a security strategy has a multi-goal counterpart, which 

he software used for the experimental implementation already 

upports. The experiments reported here could, possibly, be re- 

onducted without the merge of targets, i.e., the graph-theoretic 

ontraction. 

.4. Complexity and scalability 

The complexity of the analysis is governed by the time to solve 

 sequence of linear optimizations. The dimensions of these prob- 

ems depend on the number of strategies for both players. Using 

nterior point methods, the computational complexity is O ( | AS 1 | ·
p( | AS 1 | · | AS 2 | )) for a polynomial p that depends on the chosen op- 

imization algorithm. The need for an exhaustive enumeration of 

ttack paths can raise scalability issues, since the number of attack 

aths is worst-case exponential. However, the number of paths in 

n attack graph may become large only because many paths over- 

ap in large portions, and the defender may consider using only a 

ubset of paths that cover all edges in the attack graph, so as to 

over all known exploits (which is a polynomial number), rather 

han all possible paths (whose number is exponential). Since this 

ork was concerned with a study of the original model, which 

oes not implement such a dimensionality reduction, this modifi- 

ation of the model is a possible aisle of future studies. For the use 

ases in this work, the number of paths was sufficiently small to 

dmit an exhaustive enumeration. Likewise is the number of paths 

easibly small if the battlefield is an attack tree, rather than an at- 

ack graph. In any case, Cut-The-Rope itself does not conceptually 
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hange if the restriction is imposed only on the cardinality of the 

trategy sets to be polynomial in the number of nodes in the attack 

raph. 

.5. Including signals about adversarial activities 

The model assumes zero information for the defender about 

here the adversary is located. Many real-life systems use intru- 

ion detection, and other signaling means (here explicitly not to 

e understood in the game-theoretic sense of signaling games). We 

an compile the entirety of indications about the adversary’s activ- 

ty into a weight Pr (θ ) � = 1 / | AS 2 | for location θ to possibly start

rom. Higher values may be assigned where we have stronger in- 

ication of recent adversarial activity at location θ . 

. Conclusions and outlook 

Cut-The-Rope has been designed for ease of use in applications 

ith little information (such as exemplified with the MARA robot 

se case), but also situations where there is detailed information 

ncoded in the attack graph (such as for the MiR100 use case), or 

ven when adversarial indications are available from auxiliary se- 

urity systems, such as intrusion detection or others (including is 

ossible as outlined in Section 7.5 ). The accuracy hence depends 

n how much information we can bring into the game, being a 

ather crude approximation for MARA, but much more fine-grained 

or the MiR100 use case. In both cases, however, the defender gets 

ontrivial advice on where to allocate its typically scarce resources 

or a best defense, beyond just guarding a graph-cut or choke point 

owards the critical asset v 0 . When there are several such (evident) 

ritical regions in the network to defend, different choke points 

ay be of different criticality, depending on how many attack sce- 

arios (each executed by another avatar in Cut-The-Rope ) actually 

ake use of this area in the attack graph. 

The results obtained show some limitations for the practical 

se. First, and most substantially, the results depend on the order- 

ng of the nodes, and – in addition to the general non-uniqueness 

f equilibria – hence may be ambiguous for the defender, leaving a 

esidual chance of there being other defense possibilities. The algo- 

ithms applied in this work give only one solution, among perhaps 

any others. Second, the setting of probabilities from CVE, CVSS 

r likewise annotations is a nontrivial matter on its own, with only 

ew first steps towards a systematic and sound derivation available 

n the literature ( König et al., 2018 ). The assumption of invisibility 

f the intruder can perhaps be weakened by including signals from 

ntrusion detection or other side-information in the defender’s pol- 

cy. The model simulated here does not include this possibility. Fi- 

ally, the condensation of several attack goals into a single target 

ode comes with the price of losing accuracy and some informa- 

ion about which attack goal may be more likely to be reached, 

hus making multi criteria optimization an interesting generaliza- 

ion to study. 

Generally, Cut-The-Rope opens up an interesting class of games 

f mixed timing of moves between the actors, unlike as in ex- 

ensive or normal form games, where players usually take actions 

n a fixed order. Likewise, and also different to many other game 

odels, Cut-The-Rope has no defined start or finish for the de- 

ender (“security is never done”), while only one of the players 

nows when the game starts and ends, and the attacker can send 

ts avatars from all possible locations in the network. The model is 

hus complementary to FlipIt , while it allows the attacker to spend 

ny amount of time in the system, as long as the vital asset re-

ains out of reach. This is actually to reflect the reality of security 

anagement: we cannot keep the adversary out, we can only try 

eeping him as far away as possible. 
15 
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ppendix A. Analytic results 

For a plausibility assessment of the game’s results, we analyti- 

ally study the results on attack graphs with no information at all, 

o that we can intuitively (and without any model) determine a 

est defense. The analytic results to follow are consistent with the 

umeric findings for MARA, and, more importantly, are indepen- 

ent of the attack rate λ (see Proposition 5 ). 

Given a set AS 2 of attack paths, the defender’s best strategy in 

ut-The-Rope is to find and guard a minimal (in a sense to be de- 

ned later) graph-theoretic cut C ⊆ V between the starting node 

set) of all attack paths, and the target asset v 0 . Towards proving 

his claim, suppose that the defender would focus on a set S ⊂ V 

hat is not a cut. Then, there is a path π that bypasses S, i.e.,

 ∩ V (π ) = ∅ , but this makes π a winning strategy for the attacker

since the defender can never catch the attacker on that route). 

uppose that the defender’s guarded set C were not minimal, i.e., 

he defender spot-checks on a superset S ′ ⊃ C. Then, we can dis- 

inguish two cases: 

1. either no attack path passes through the nodes S ′ \ C, in which 

case defending them is useless, and hence defending S ′ is a 

sub-optimal strategy (as it consumes too many resources), or 

2. there is at least one attack path through a node in S ′ \ C and

another node in C. In that case, we can safely remove either of 

the two, since both would cut the rope in the sense we desire. 

This strictly shrinks S ′ , and we can repeat this reduction until 

the resulting set has become minimal (in terms of cardinality). 

Compiling the thoughts above concludes the proof of the next 

esult: 

emma 2. Let s be the root of the attack graph, and let v 0 be the

arget asset. Furthermore, assume that the defender can cut the rope 

nywhere in the graph, except at the starting point and the target (to 

void trivialities). The optimal strategy of defense in CUT-THE-ROPE is 
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uarding an s − v 0 -cut of minimal cardinality. If there is more than 

ne starting point or more than one target asset, the cut is understood 

etween the respective sets thereof. 

Lemma 2 makes no assertion about what cut to choose if there 

re several. For example, if we have only one attack path overall, 

hen every node on it would be a valid cut. Intuitively, the best 

ption is cutting the (single) rope as close as possible near v 0 , in

rder to get the most likely locations covered from which an at- 

acker’s avatar could start. The proof of Lemma 3 makes this rigor- 

us: 

emma 3. Assume that a defender’s (mixed) strategy prescribes to 

pot-check on the attack path π . The best point to cut the rope is 

he location v whose distance to v 0 along the path π is minimal. 

roof. Consider the attack path π as a sequence of consecutive 

ertices (u 0 , u 1 , u 2 , . . . , u l = v 0 ) , and write V (π ) to mean the set of

ll vertices on π . Call c ∈ V (π ) the vertex whose distance d(c, v 0 )
s minimal among all V (π ) ∩ AS 1 , i.e., all nodes on π that the

efender has in its action set AS 1 and can hence spot-check. Let 

 

′ ∈ V (π ) ∩ AS 1 be another node to possibly check on the same

ath, which is distinct from c. It follows that either there is a 

onnection c ′ → c (if the two are consecutive) or there is at least 

ne node in between c ′ → · · · → c. In either case, we have distinct

vatars θc ′ and θc , corresponding to these two nodes as starting 

oints. Both use the same distribution F N with probability mass 

unction f N , for the number N of steps taken forward on π , only 

tarting at different locations ( c or c ′ hereafter). To ease notation 

n the following, let us associate the avatar θ directly with a node 

n π (this creates no ambiguities). 

The probability mass that an avatar θi puts on v 0 when start- 

ng from location i is given by the chances to take at least 

he residual distance d π (θ, v 0 ) from the starting point (θ ) un- 

il v 0 . Given the distribution function F N of the random distance 

vercome upon adversarial activity, this is Pr (N ≥ d(θ, v 0 )) = 1 −
 N (d π (θ, v 0 )) . Throughout the rest, π and v 0 will both be fixed, 

o we can safely omit them from our notation, so let us write 

θ := d π (θ, v 0 ) , for the residual distance on the path π between

he avatar starting from θ , and the target v 0 . Moreover, put u θ :=
r (N ≥ �θ ) = 1 − F N (�θ ) = 

∑ 

d≥�θ
f N (d π (θ, v 0 )) to abbreviate the

robability of the attacker to reach v 0 within the next move. 

The utility over all attacker avatars is then 

r ( asset v 0 is lost to the attacker ) = 

∑ 

θ∈ �
Pr (θ ) · u θ (A.1) 

hich is the total probability mass assigned to v 0 by all adversary 

vatars. 

Now, let us compare the effects of spot-checking c vs. spot- 

hecking c ′ that is farther away from v 0 . Since we have only the

ttack path π on which c ′ comes before c, let us break up the 

ath into three corresponding parts π = (u 0 , . . . , c 
′ = u i , . . . , c =

 j , . . . , u l = v 0 ) , and expand (A.1) accordingly ∑ 

∈ �
Pr (θ ) · u θ = 

∑ 

θ∈ (u 0 , ... ,u i = c ′ ) 
Pr (θ ) · u θ (A.2) 

+ 

∑ 

θ∈ (u i +1 , ... ,u j = c) 
Pr (θ ) · u θ (A.3) 

+ 

∑ 

θ∈ (u j+1 , ... ,u � = v 0 ) 
Pr (θ ) · u θ . (A.4) 

It will be helpful to remember the effect of truncating a distri- 

ution at t , which is switching from F N (d) to the conditional dis- 

ribution on F N (d| d ≤ t) , whose density is 

f N (d| d ≤ t) = 

{
f N (d) 
F N (t) 

, if d ≤ t;
0 , otherwise. 

(A.5) 
0

16 
The important fact is that cutting at some point on the path af- 

ects all avatars on the segment from the beginning node until the 

ut node c or c ′ . If we cut at c ′ , we take out the whole expression

A .2) , leaving (A .1) = (A .3) + (A .4) , in a slight abuse of formalism

ere. However, if we cut at c, term (A.3) also drops out of (A.1) ,

eaving this to be the better option for the defender. �

Now, we can compile the findings so far into a generic charac- 

erization of the defender’s best choice: 

roposition 5. Let an acyclic attack graph G be with root node 

 0 , and let v 0 be the target node (likewise, for sets thereof if 

here are multiple). Furthermore, let d be a distance measure in G . 

he defender’s optimal strategy in CUT-THE-ROPE is spot-checking a 

inimum-cardinality u 0 − v 0 -cut C, with the property that for each 

 ∈ C, the distance d(c, v 0 ) is minimal. 

1. Consistency of numeric and analytic results 

The numeric findings for the MARA use case agree with the an- 

lytic predictions to defend the graph cut that is closest to the tar- 

et nodes. The formal arguments above assume the same distribu- 

ion for all possible paths, which does not hold for the MiR100 use 

ase. Thus, the optimal defense no longer needs to be a graph cut, 

nd the numeric results about the MiR100 use case confirm this 

ossibility. Since in the MiR100 case, the attack paths have differ- 

nt efficacies, strategic dominance among the attack paths may af- 

ect the results accordingly. Since the results, in this more general 

ase, depend on the distribution conditional on the attack path, it 

ppears unlikely that comparable analytic predictions can be made 

or the movement pattern of Section 3.4 , and we leave this as an

pen problem. 

Regarding the heuristic defense, its bad performance in com- 

arison to Cut-The-Rope can be attributed to the defender blindly 

hecking everywhere on the attack graph, while the intuition (also 

ehind the formal arguments here) would rather advise to defend 

loser to the goal. This suggests that the optimization that Cut- 

he-Rope may be reasonably replaced by a heuristic defense, only 

ocused on a graph cut subset of nodes, and indeed, the numbers 

or the MARA use case show an approximately uniform defense of 

odes on such a cut to be optimal. Overall, however, it is advisable 

o run an optimization, since just adding the analytic prediction of 

here to defend to the heuristic is incorrect in the case where the 

raversal of an attack path depends on the path’s properties, such 

s distinct difficulties to exploit, as in the MiR100 use case. Here, 

he performance of the defense is substantially better than for the 

euristic, but the apparent focus on a graph cut is not found in the 

esults. 

ppendix B. Derivation of the probability (13) 

The density of the Erl(n, λ) distribution family is for x ≥ 0 

iven by f Erl(n,λ) (x ) = 

λn x n −1 

(n −1)! 
e −λx and f (x ) = 0 for x < 0 . The den-

ity of the exponential distribution is a special case thereof, 

f Exp(λ) (x ) = f Erl(1 ,λ) (x ) . Abbreviating the total time as T = T 1 + T 2 +
 . . + T n , with all i.i.d. summands T i ∼ Exp(λπ ) , we are interested in

hether T ≤ W ⇐⇒ Z := W − T ≥ 0 . The case Z = z for z ∈ R oc-

urs if and only if W = t + z and T = t for any t ∈ R , and we get

he convolution-like integral for the density of T − W as 

f T −W 

(z) = 

∫ ∞ 

−∞ 

f Erl(λπ ,n ) (t ) f Erl(1 ,λD ) (t + z) dt . 

e are, however, only interested in the probability p = Pr (T − W ≥
) , which adds a second integral to get the quantity of interest 
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Fig. C.7. Cut-The-Rope (static game) inside the continuous process of permanent system hardening (dynamic game). 
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0 

f T −W 

(z) dz 

= 

∫ ∞ 

0 

∫ ∞ 

−∞ 

f Erl(λπ ,n ) (t) f Erl(λD , 1) (t + z) d td z. 

 bit unexpectedly, the double integral makes things easier to eval- 

ate here, since we can swap the order of integration (by the 

ubini-Tonello theorem), to get 

p = 

∫ ∞ 

−∞ 

∫ ∞ 

0 

f Erl(λπ ,n ) (t) ︸ ︷︷ ︸ 
const. w.r.t. z 

f Erl(λD , 1) (t + z) dzdt 

= 

∫ ∞ 

−∞ 

f Erl(λπ ,n ) (t) 

∫ ∞ 

0 

f Erl(λD , 1) (t + z) dz ︸ ︷︷ ︸ 
= e −λt 

dt 

= 

∫ ∞ 

−∞ 

f Erl(λπ ,n ) (t) ︸ ︷︷ ︸ 
=0 for t< 0 

e −λt dt = 

∫ ∞ 

0 

f Erl(λπ ,n ) (t) e −λt dt 

= 

(
λπ

λπ + λD 

)n 

ppendix C. Application for risk control 

Actions with a permanent effect change the attack surface by 

locking certain paths, increasing the attack detection capabilities, 

r similar. Examples include the installation of a firewall, malware 

canners, deactivation of services or accounts, and many more. 

If the defender’s action space includes at least one with po- 

entially permanent effect, the attack graph, and hence the over- 

ll game, changes with the defender’s activity, and the game must 
17 
e re-instantiated before the next round after pruning the attack 

raph . This turns Cut-The-Rope into a dynamic game, but it is still 

epeated with infinite time horizon. It is fair to remark that the 

ree may not only become pruned, but introduce new attack paths 

pon inserting new components, installing new software or simi- 

ar. 

In both cases, the setup of the game may (but does not need 

o) start from the results of a topological vulnerability analysis, 

ith repetitions being either from the existing defense equilib- 

ium strategy (static instance) or including the re-instantiation and 

quilibrium computation (dynamic instance); see Fig. C.7 for a 

owchart-like presentation. 
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