
A Probabilistic Algorithm for
Secret Matrix Share Size Reduction

Eckhard Pfluegel∗, Emmanouil Panaousis† and Christos Politis∗

∗Wireless, Multimedia & Networking (WMN) Research Group
Kingston University London

{e.pfluegel, c.politis}@kingston.ac.uk

†Queen Mary, University of London
panaousis@eecs.qmul.ac.uk

Abstract—Secret sharing is an important tool in cryptography
and has many applications for wireless networks. This paper is
motivated by the need for space-efficient secret sharing schemes.
We first propose a simple probabilistic algorithm which can be
used, prior to secret sharing, in order to split a given secret into
public and private data. The public data can be made openly
available, and any specific secret sharing method can be used in
order to share the private data. We then show that, combined
with a previously published space-efficient single secret sharing
method, this yields a novel probabilistic matrix-based online
multi-secret sharing method with small expected share size. In
particular, compared with other matrix-based approaches, our
scheme is of similar expected computational cost but smaller
share size. Finally, we report on an implementation of our method
and evaluate its performance. Our algorithm could be useful to
design efficient secret sharing applications for wireless networks,
in particular mobile ad-hoc networks, in areas such as secure
routing, data transmission or key management.

Index Terms—Space-Efficient Multi-Secret Sharing, Proba-
bilistic Algorithms

I. INTRODUCTION

Due to vulnerabilities inherent of the wireless medium and
the mobile nature of modern smart devices, the cryptographic
technique of secret sharing can help distributing user and pro-
tocol data, information related to key management, and trust
in general [1]. For example, this becomes particularly crucial
in decentralised and autonomous wireless networks due to the
absence of a trusted authority which could act as the main
provider of cryptographic material for network participants.
Sharing sensitive information across several nodes in such
peer-to-peer or mobile ad-hoc networks (MANETs) can help
improving confidentiality, integrity and availability.

Secret sharing is based on the idea that data (the secret)
can be protected by dividing it into several parts (the shares)
and distributing these shares to individual parties (the share-
holders). The original data can then be deleted. Knowledge of
a single share will not help with reconstructing the secret. A
(k, n) perfect secret sharing scheme implements the following
properties:

• It divides the secret into n shares.
• Any coalition of k ≤ n shareholders is able to reconstruct

the secret.

• Any coalition of less than k shareholders cannot reveal
any partial information on the secret.

Over the years, since it was introduced independently by
Shamir [2] and Blakley [3], a great number of different secret
sharing techniques and variants have been introduced in the
literature and additional properties and features have been
developed, see e.g. [4] and the references therein.

In the context of secret sharing implementations for wireless
security applications [5], a focus on lightweight algorithms
has been made in recent research. As it is important to min-
imise network traffic overhead and energy costs of resource-
constrained mobile devices, techniques have been developed
which are particularly efficient when dealing with several (or
equivalently, large) secrets. Amongst these, due to their good
performance, particular attention should be given to the class
of matrix-based approaches as initiated by Bai ([6], [7]) and
subsequently extended in [8]. A matrix-based approach was
also undertaken in the sophisticated scheme by [9], however
not focussing on space-efficiency.

In this paper, inspired by the matrix-based approach, we
present two contributions:

• We propose a simple probabilistic algorithm which can
be used, prior to secret sharing, in order to split a given
secret s into public data P and private data Q where
|P | = |s| and the expected size of the private data is
|Q| = Θ(

√|s|). The public data P can be made openly
available, and any specific secret sharing method can then
be used in order to share the private data Q. We refer to
this method as a Matrix Share Size Reduction (MSSR)
technique. We have implemented our MSSR technique
and report on some tests we have carried out.

• We show that combined with a space-efficient single
secret sharing method this yields a probabilistic online
multi-secret sharing method with expected small share
size. For example, when using the space efficient (k, n)
secret sharing scheme from [10], we obtain for a share
si the expected share size

|si| = 1

k − 1
·
√

Θ(|s|)

1

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

where |s| denotes the size of the original secret. Com-
pared to the methods presented by ([6], [8]), this is an
improvement by a factor k − 1 which, depending on the
value of k, can be substantial.

This paper is organised as follows. In Section II we intro-
duce some notations and terminology. In Section III, our algo-
rithm is given while Section IV analyses its space-efficiency,
cost as well as security. Section V explains the use of the
algorithm as a MSSR for a space-efficient online multi-secret
sharing scheme. A description of our implementation and
evaluation of the algorithm is given in Section VI, followed
by the conclusion of this paper.

II. NOTATIONS AND TERMINOLOGY

Let us consider a secret s, to be distributed into n different
shares si (1 ≤ i ≤ n), so the knowledge of at least k (1 < k ≤
n) shares is necessary and sufficient to reconstruct the initial
secret s. Online multi-secret sharing is a specialised secret
sharing technique that aims at efficient sharing of secrets with
the help of additional public data.

A cyclic square matrix A ∈ Z
t×t
p is a matrix whose

minimal polynomial and characteristic polynomial coincide.
Any cyclic matrix is similar to its so-called companion form
[11]. This form is a matrix C with all entries zero except for
the elements in the upper off-diagonal which are ones, and
arbitrary elements in the bottom row. Hence, the matrix can
be written as

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1
. . .

...
...

...
. 0

0 0 . . . 0 1
c0 c1 . . . ct−2 ct−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

The coefficients of the characteristic polynomial of the matrix

f(λ) = det(A− λI) = λt − ct−1λ
t−1 − · · · − c1λ− c0 (2)

can be read from the elements in the bottom row of the matrix
(1).

In this paper, we design a probabilistic algorithm that always
terminates, but does not necessarily compute the desired result.
This is commonly referred to as a Monte Carlo probabilistic
algorithm.

All scalar and matrix arithmetic in this paper is done in
the field Zp. We will state this use of modular arithmetic
explicitly in our presented pseudo-code, but will otherwise
always assume that arithmetic is done modulo p.

For an integer d, we denote by |d| = logb s its size. For
example, we have for b = 2 that |d| = log2 d, the number of
bits required to store d.

III. THE ALGORITHM

In this section, we will explain our matrix share size
reduction algorithm, and illustrate it using an example.

A. Conversion of Secret Scalar to Secret Matrix

Many secret sharing techniques commonly handle secrets as
integers. From a mathematical point of view however, integers
do not possess much structure. The idea that appeared in [8]
and later also in [9] is to convert an integer secret to a more
complicated mathematical object (an integer matrix) and to
exploit the resulting new properties. We find this beneficial as
well, and this conversion is the first step for our algorithm.

The following algorithm takes as input the given secret
scalar value s, and a prime number p satisfying

p ≤ √
s. (3)

It then converts s into a matrix S ∈ Z
t×t
p where

t =
⌈√

1 + �logp(s)�
⌉
. (4)

This is achieved by writing s as a base p number and
populating the matrix S with its digits. We aim at choosing p
so that we obtain a square radicand in (4), but if this is not
possible, we have to pad with additional zeros. The condition
(3) ensures t ≥ 2.

The algorithm can be described as follows:

Algorithm 1 ConvertSecret(s, p)
1: Choose a prime number p ≤ √

s
2: Compute the digits of s as a number to the base p
3: Arrange these digits in a t× t matrix S (by filling in zero

elements if necessary)
4: Return the matrix S

B. Matrix Share Size Reduction

The idea is now to achieve data compression by computing
a canonical matrix normal form of the secret matrix S and
to extract its characteristic data. In our algorithm, we wish
to compute a companion matrix, similar to S, and retain the
characteristic polynomial of the matrix. This is more efficient
than computing the Jordan Normal Form as suggested in [9],
since it does not require field extensions of Zp. However, we
can only give a probabilistic algorithm, as not every matrix
is cyclic. The algorithm takes as input the secret matrix
S ∈ Z

t×t
p and prime number p, and returns either FALSE or

the characteristic polynomial of S together with a similarity
transformation W bringing S into companion form.

Remark 3.1: This algorithm will successfully compute a
companion matrix, provided both of the following assumptions
hold:

(i) The matrix S is a cyclic matrix.
(ii) The vector v chosen at random in Step 1 of Algorithm

2 is a cyclic vector.
The idea of our share size reduction method is now to

repeatedly choose random prime numbers and to convert the
secret to a matrix, followed by an attempt to compute a
companion form. In the next section, we will show that a
maximal share size reduction is achieved for small values of
p. Hence, we start with p = 2 and successively find the next

2

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

Algorithm 2 ComputeCompanionMatrix(S, p)
1: v := random row vector ∈ Z

1×t
p

2: w1 := v
3: for i = 2 to t do

4: wi := wi−1 · S mod p
5: end for

6: W := matrix whose rows are made from the wi

7: if detW ≡ 0 mod p then

8: return FALSE
9: end if

10: C := WSW−1 mod p
11: Return W and the bottom row of C

prime greater than p. The function ReduceShareSize expects
the secret s as input and returns as public data P ∈ Z

t×t
p

the computed similarity transformation. The private data Q
consists of the coefficients of the characteristic polynomial f
and the prime number p used for the size reduction.

Algorithm 3 ReduceShareSize(s)
1: success := FALSE
2: p := 2
3: while success = FALSE and p ≤ √

s do

4: S := ConvertSecret(s, p)
5: success := ComputeCompanionMatrix(S, p)
6: p := next prime(p)
7: end while

8: if success 	= FALSE then

9: Retrieve the similarity transformation W and the
characteristic polynomial f

10: Return W as public data and the coefficients of f ,
together with p, as private data

11: else

12: Return FAIL
13: end if

C. Example

In order to illustrate our method, we give an example
using the secret s = 123456789123456789. The algorithm
ComputeCompanionMatrix did not succeed with the choice
p = 2, but converts s to the matrix below using p = 3:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 2 0 2

0 1 2 1 1 1

0 0 2 1 2 2

2 0 2 2 1 0

0 1 2 1 2 1

2 1 0 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

As public data, we obtain the transformation

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 0 2 0

0 1 2 1 2 2

0 2 0 0 0 2

1 1 1 1 1 0

2 2 0 1 0 0

2 2 2 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The matrix C = WSW−1 is in companion form:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

It is now sufficient to share the coefficients [0, 0, 2, 2, 1, 0] of
the characteristic polynomial as well as p.

IV. ANALYSIS OF OUR MSSR TECHNIQUE

We analyse the likelihood of success, space and cost require-
ments of our MSSR technique as well as discuss its security.

A. Space and Cost — Worst Case

When inspecting the space-efficiency of our MSSR tech-
nique, we need to compute the sizes of the public data P and
private data Q. We see immediately |P | = |W | = |S| = |s|.
Also, |Q| = |f |+ |p| where

|f | = t · |p| = |S|
t

=
|s|
t

where t as in (4). Hence,

|f | = |s|⌈√
1 + �logp s�

⌉ =
|s|

Θ(
√|s|) = Θ(

√
|s|).

A more refined analysis yields

1⌈√
1 + �logp s�

⌉ ≤ 1√
logp s

hence

|f | ≤
√

logb p

logb s
· |s| =

√
|p| ·

√
|s|.

From this follows the size estimate for the private data

|Q| = Θ(
√
|s|) + |p| = Θ(

√
|s|) + logb(

√
s) = O(|s|)

in the worst case. In this case, we do not achieve a reduction
in share size.

Concerning the worst-case cost analysis of the algorithm, we
observe that Algorithm 2 requires t − 1 multiplications of a
matrix vector by matrix, followed by a modular determinant

3

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

computation, matrix inversion and two matrix multiplications.
All vectors and matrices are of dimension t. Algorithm 3 calls
Algorithm 1 and 2 at the most l times where l = π(x) is the
number of primes less or equal than x =

√
s. Using the fact

that for large values of x, the prime number theorem states
π(x) ∼ x

ln x , we obtain

l = O

(√
s

log
√
s

)
= O

(
b|s|/2

|s|
)

= O(b|s|).

Overall, this is an exponential worst-case run-time as a func-
tion of the input size.

B. Expected Space and Cost

In order to assess the expected (average) space and cost re-
quirements of our algorithm, we will assert that its probability
of success, using a small prime number p, is relatively high.
The underlying reason is that there are enough cyclic matrices
and vectors available in Z

t×t
p .

Lemma 4.1: The probability that Algorithm 2 successfully
computes a companion matrix for a secret matrix S and a
given prime p is

Prob[companionp] = (1− p−1)(1− p−2) · · · (1− p−t)

where t is defined as in (4).
Proof The proof of this lemma is straightforward by using the
result of [11, Proposition 2.8] which says that the probability
that the two assumptions (i) and (ii) in Remark 3.1 hold
simultaneously is exactly (1 − p−1)(1 − p−2) · · · (1 − p−t).
�

An estimate can be given for Prob[companionp] that is inde-
pendent of t. We recall that t ≥ 2.

Lemma 4.2: We have the following probability estimate:

Prob[companionp] > 1− p−1 − p−2.

Proof This follows from Lemma 4.1 and, since t ≥ 2, the
estimate

(1− p−1)(1− p−2) · · · (1− p−t) > 1− p−1 − p−2

which is given in [11, Lemma 3.5]. �

We see that if p > 2, the estimate gives Prob[companionp]>
0.5. Repeated iteration of Algorithm 1 and Algorithm 2 allows
then increasing the probability of success to any desired value.

Lemma 4.3: The probability that Algorithm 3 terminates
successfully after at the most l + 1 iterations (l ≥ 2) is

Prob[successl] > 1− 3 · 4l−2

9l−1
.

Proof We compute the desired probability using the formula

Prob[successl] = 1−
l∏

i=1

(1− Prob[companionpi
]).

We can now use Lemma 4.2 in order to estimate this proba-
bility as

Prob[successl] > 1− (2−1 + 2−2)(3−1 + 3−2)l−1

= 1− 3 · 4l−2

9l−1
.

�

For example, we have for l = 9 that Prob[success9] ≈ 0.999,
so on average only one in 1000 attempts would need more
than 10 iterations.

We summarize our space and cost analysis with the follow-
ing

Theorem 4.1: Algorithm 3 is a probabilistic Monte Carlo
algorithm with an exponential worst-case run time, as a
function of the size of the input s. The expected reduced share
size is Θ(

√|s|).
Proof The statement about the worst-case analysis follows
from the considerations of the previous section. Lemma 4.3
shows that the expected number of iterations is small. As a
consequence, the size of p will be negligible, and the expected
size of the private data is then |Q| = |f | = Θ(

√|s|). �

C. Security

Assume an adversary wants to exploit the availability of the
public data P in order to derive the secret matrix S. He knows
that P transforms S into a companion matrix C, but he can
only guess its value. The size of the search space S is

|S| = |Q| = Θ(
√
|s|).

Thus, reducing the share size reduces the security as we have
a smaller search space. Also, the elements of the search space
might not be equally distributed. This is the price to pay for the
increased space efficiency. However, it is clear that knowing
P does not give any advantage in deducing the secret matrix
S.

V. USE FOR ONLINE MULTIPLE-SECRET SHARING WITH
SMALL SHARES

Combined with a particular single secret sharing scheme, we
can use our MSSR technique in order to obtain a probabilistic
online multi-secret sharing scheme.

After calling Algorithm 3, shares can be created by sharing
Q using any (k, n) secret sharing scheme. We share the
coefficients of f and the value of p, and store the similarity
transformation W as public information. We detail this in
Algorithm 4.

The shares si have to be distributed securely in order to
guarantee data confidentiality and integrity. The public data P
needs to be authenticated.

The secret can be reconstructed from a subset A =
{si1 , . . . , sik} of k shares and the public information P as
described in Algorithm 5.

4

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

Algorithm 4 CreateShares(f , k, n)
1: success := ReduceShareSize(s)
2: if success 	= FALSE then

3: Let SSS be a (k, n) secret sharing scheme
4: Create shares s1, . . . , sn by sharing f and s using SSS
5: Return s1, . . . , sn
6: end if

Algorithm 5 ReconstructSecret(A, P)
1: Reconstruct the characteristic polynomial f and the value

of p by acquiring at least k shares.
2: Build C from the t coefficients of f .
3: Use the public data P in order to compute the secret

matrix S = P−1CP mod p.
4: Reconstruct s from S and p.

Now suppose we use in Algorithm 4 the method from [10]
as secret sharing scheme. This method creates shares the sizes
of which are the size of the original secret divided by k − 1.
Overall, with the expected size of Q being |Q| = Θ(

√|s|),
we hence obtain the expected share size

|si| = 1

k − 1
·
√
Θ(|s|).

Bai’s method was originally formulated taking as input t2

secrets arranged in a matrix S, and it creates shares that are
vectors of t elements. Hence, it only achieves a share size of√
Θ(|s|).
In terms of expected computational cost, our scheme seems

similar to Bai’s deterministic cost. The main theoretical disad-
vantage of our method is its probabilistic nature, although in
practice we believe that this is not a problem. It is important
to realise that our main contribution is the matrix share size
reduction technique which in itself does not really compare
with Bai – the latter integrating both size reduction as well as
share creation into one method.

VI. IMPLEMENTATION AND EVALUATION

We describe an implementation of our algorithm that we
have carried out using the computer algebra system Maple.
We evaluate our implementation by running the algorithm for
a large sample of secrets.

A. Description

Our algorithm needs efficient handling of linear algebra
operations modulo a prime number p. After experimenting
with several programming languages, we decided to adopt
Maple for our implementation. The Maple Modular pack-
age provides efficient modular arithmetic for tasks such as
computing determinants, matrix products and inverses. This
enabled us to write a concise and efficient program – our initial
implementation of Algorithm 1, 2 and 3 contains only 51 lines
of code and can be downloaded at [12].

However, Maple being a symbolic computational tool, it
tends to be slower than numerical packages such as Matlab

or mainstream compiled programming languages. Hence, it
may be possible to further improve the execution times that
we will be reporting in the next section. A more sophisticated
implementation, for example in C/C++ or Java, using suitable
maths libraries, would undoubtedly be desirable if speed was
an issue.

For our study, we will focus on evaluating the behaviour
of our randomised algorithm focussing on its probability of
success, and the achieved share size reduction.

B. Evaluation

For secrets with various sizes 10 ≤ |s| ≤ 1000 where
|s| = log s is the number of decimal digits of s, we have
created a sample of 1000 secrets each. For each sample, we
have run the algorithm, recording lmin, lmax and lavg as the
minimal, maximal and average number of iterations needed to
achieve a share size reduction. We have also given the average
execution time per sample texec, measured in seconds. From
the information on lavg , one can derive the average value of
the prime number p used during the algorithm, as well as the
achieved share size reduction.

TABLE I
MSSR EVALUATION FOR SAMPLE OF SHARES

|s| = log s lmin lmax lavg texec

10 1 5 2.29 0.905
20 1 4 2.52 1.232
30 1 5 2.3 1.326
40 1 6 2.46 1.716
50 1 5 2.28 1.997
100 1 5 2.7 3.79
200 1 9 2.32 8.144
300 1 5 2.42 13.65
400 1 5 2.32 19.765
500 1 6 2.32 26.833

1000 1 5 2.06 70.06

This data confirms that the average number of iterations
lavg seems independent of t, hinted at by our estimate in
Lemma 4.1. Generally, lavg is small (≤ 5 in the majority of
size samples), the algorithm successfully terminated after only
one iteration at least once in each sample, and never needed
more than 9 iterations. Hence, the biggest prime number that
was used was p = 19, very much in line with our estimate of
Lemma 4.3.

VII. CONCLUSION

In this paper, we have given a probabilistic algorithm to
achieve matrix share size reduction. This algorithm can be
used, combined with single secret sharing methods, in order to
implement space-efficient online multi-secret sharing schemes.
We have derived the expected and worst-case space-efficiency
and computational cost of our algorithm, and have showed how
to obtain a scheme that is more space-efficient than previously

5

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

published matrix-based methods. We have evaluated our algo-
rithm, using an implementation, and show that the average
space-efficiency and cost confirm our theoretical analysis.

Several pieces of future work may arise from this paper.
We would like to more systematically implement and evaluate
the entire secret sharing mechanism including share creation.
This would need an implementation of the method in [10].
An implementation of Bai’s method and comparison with our
method would also be valuable. Furthermore, we could apply
our MSSR method recursively, by applying it to the private
data Q. This would further reduce the size of the private data,
but augment the amount of public data one would have to
provide. Also, extending our algorithm for the use in dynamic,
proactive or verifiable secret sharing could be envisaged. This
could be useful for the design of efficient secret sharing ap-
plications for wireless networks. Especially, architectures that
consider distributed hash tables for mobile ad-hoc networks,
as the one proposed in [13] and [14], could take advantage
of our algorithm to improve network security. Last but not
least, we would like to design a deterministic algorithm that
systematically performs as well as our probabilistic algorithm
does on average.

REFERENCES

[1] G. Polymerou, E.A. Panaousis, E. Pfluegel and C. Politis, “A
Novel Lightweight Multi-secret Sharing Technique for Mobile Ad-
hoc Networks,” Proc. of the 29th Wireless World Research Forum
(WWRF), Berlin, Germany, October, 2012.

[2] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[3] G. R. Blakley, “Safeguarding cryptographic keys,” Managing Require-
ments Knowledge, International Workshop on, vol. 0, p. 313, 1979.

[4] A. Beimel, “Secret-sharing schemes: A survey,” in Coding and Cryp-
tology, ser. Lecture Notes in Computer Science, Y. Chee, Z. Guo,
S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, Eds. Springer
Berlin Heidelberg, 2011, vol. 6639, pp. 11–46.

[5] H. Deng, A. Mukherjee, and D. Agrawal, “Threshold and identity-based
key management and authentication for wireless ad hoc networks,” in
Proc. International Conference on Information Technology: Coding and
Computing (ITCC), vol. 1, pp. 107–111, Apr. 2004.

[6] L. Bai, “A strong ramp secret sharing scheme using matrix projection,”
in Proc. International Symposium on World of Wireless, Mobile and
Multimedia Networks (WOWMOM), IEEE Computer Society, pp. 652–
656, 2006.

[7] L. Bai and X. Zou, “A proactive secret sharing scheme in matrix
projection method,” International Journal of Security and Networks, In-
derscience, vol. 4, no. 4, pp. 201–209, 2009.

[8] K. Wang, X. Zou, and Y. Sui, “A multiple secret sharing scheme based
on matrix projection,” in Proc. Annual IEEE International Computer
Software and Applications Conference (COMPSAC), vol. 1, pp. 400–
405, Jul. 2009.

[9] D. Zhao, H. Peng, C. Wang, and Y. Yang, “A secret sharing scheme
with a short share realizing the threshold and the adversary structure,”
Computers & Mathematics with Applications, vol. 64, no. 4, pp. 611 –
615, 2012.

[10] A. Parakh and S. Kak, “Space efficient secret sharing for implicit data
security,” Information Sciences, vol. 181, no. 2, pp. 335 – 341, 2011.

[11] P. M. Neumann and C. E. Praeger, “Cyclic matrices over finite fields,”
Journal of the London Mathematical Society, vol. 52, no. 2, pp. 263–
284, 1995.

[12] E. Pfluegel, “Matrix share size reduction.” [Online]. Available:
http://staffnet.kingston.ac.uk/∼ku32104/MSSR

[13] G.P. Millar, E.A. Panaousis and C. Politis, “ROBUST: Reliable overlay
based utilisation of services and topology for emergency MANETs,”
in Proc. Future Network and Mobile Summit, IEEE, Florence, Italy,
Jun.16-18, 2010.

[14] G.P. Millar, E.A. Panaousis and C. Politis, “Distributed Hash Tables
for Peer-to-Peer Mobile Ad-hoc Networks with Security Extensions,”
Journal of Networks, vol. 7, no. 2, pp. 288-299, issn: 1796-2056,
February 2012.

6

European Wireless 2013, 16 – 18 April, 2013, Guildford, UK ISBN 978-3-8007-3498-6 © VDE VERLAG GMBH • Berlin • Offenbach, Germany

