
Selecting Security Mechanisms in Secure Tropos

Michalis Pavlidis, Haralambos Mouratidis
Emmanouil Panaousis and Nikolaos Argyropoulos

University of Brighton
{m.pavlidis,h.mouratidis,e.panaousis,n.argyropoulos}@brighton.ac.uk

Abstract. As security is a growing concern for modern information
systems, Security Requirements Engineering has been developed as a
very active area of research. A large body of work deals with elicitation,
modelling, analysis, and reasoning about security requirements. However,
there is little evidence of efforts to align security requirements with se-
curity mechanisms. This paper extends the Secure Tropos methodology
to enable a clear alignment, between security requirements and security
mechanisms, and a reasoning technique to optimise the selection of secu-
rity mechanisms based on these security requirements and a set of other
factors. The extending Secure Tropos supports modelling and analysis
of security mechanisms; defines mathematically relevant modelling con-
cepts to support a formal analysis; and defines and solves an optimisation
problem to derive optimal sets of security mechanisms. We demonstrate
the applicability of our work with the aid of a case study from the health
care domain.

Keywords: Security modelling, Secure Tropos.

1 Introduction

Security is an important aspect of modern information systems and it is widely
accepted that it should be treated from the early stages of the information system
development process, and not as an afterthought [1–4]. As a result, during the
last fifteen years the research community has witnessed a significant amount of
works [5, 6], which deal with the definition, elicitation, analysis, and reasoning
of security requirements. We have contributed to this body of literature, with
our work on Secure Tropos [7], which is a security requirements engineering
methodology that supports elicitation and analysis of security requirements.

Ideally, enough security countermeasures (also known as security mechanisms
or security safeguards) should be applied to a system to satisfy those security
requirements. However, in practice, there is usually a trade-off between security
measures and other factors such as cost and time. The literature from the se-
curity engineering community has proposed a number of works that focus on
security countermeasures selection usually in relation to vulnerabilities [8–10],
investment costs [11,12] or risks [13,14]. However, such approaches have ignored
the relationship between security mechanisms and security requirements.

We believe, this is an important parameter, especially in the current era
of information systems, where security requirements can frequently evolve, and

there is a plethora of available security mechanisms. It is only when there is
a clear relationship between security requirements, security mechanisms, and
potential trade-off factors (such as cost and benefit of such mechanisms) that
the decision is fully supported with the right evidence.

On the other hand, despite the impressive amount of work in the (Security)
Requirements Engineering area, the literature provides little evidence of works
that provide a clear relationship between security requirements and potential
security mechanisms, and it lacks automated approaches to optimise the selection
of security mechanisms based on security requirements and a set of other factors,
such as cost.

In this paper, we address this gap by extending our previous work on Secure
Tropos.

The specific contributions of our work can be summarised as follows:

– extension of a security requirements engineering methodology to support a
clear alignment of security requirements and security mechanisms through a
well defined process;

– definition of benefit, cost, satisfiability, satisfiability weight, non-functional
requirements (NFR) cost, financial cost in the context of security require-
ments analysis, and a clear relationship with related concepts of the Secure
Tropos methodology;

– mathematical representation/formulation of the relevant modelling concepts
and relations, along with a definition of a graph data structure to support
their modelling;

– computation of an optimal set of security mechanisms in relation to security
requirements, given certain criteria about maximum NFR costs, minimum
satisfiability levels for each security requirement, and an available monetary
budget, by solving a multi-objective optimisation problem;

– application and evaluation of the work to a real-case study.

The next section provides an overview and comparison with related work,
while Section III provides a summary of Secure Tropos. Section IV introduces our
extensions and Section V introduces a case study from the health care domain,
and it discusses the application of our approach to the case study. Section VI
concludes the paper.

2 Related Work

The domain of requirements engineering is already rich in terms of decision
making techniques, which reason about the selection of alternative design options
in order to satisfy requirements that are represented as goals in Goal Oriented
Requirements Engineering GORE approaches [15] [16] [17] [18] [19] [20] [21] [22].

However, all these works have not been developed with security in mind. As
such, on a conceptual level they lack a clear definition of security requirements
and security related concepts such as security mechanisms, while on a process
level they lack structured methods and processes to support the identification
of security mechanisms and the selection of security packages (set of security
mechanisms) to satisfy the elicited security requirements.

The literature also provides a large body of work from the security require-
ments engineering area [3,6]. Mellado et al. [23] introduced the Security Require-
ments Engineering Process (SREP), which is based on several Common Crite-
ria constructs to elicit and analyse security requirements. The Security Quality
Requirement Engineering Methodology (SQUARE) [24] is another security re-
quirements engineering approach similar to SREP. Both SREP and SQUARE
are asset-based and risk-driven methods that follow a number of steps, for elicit-
ing, categorising, and prioritising security requirements. Sindre and Opdahl [25]
have developed a misuse case driven approach to establish visual link between
use cases and misuse cases for eliciting security requirements at an early stage
of the development. McDermott and Fox [1] adapt use cases to capture and
analyse security requirements, and they call the adaption an abuse case model.
Liu et al. [26] analyse security requirements as relationships amongst strategic
actors by proposing different kinds of analysis techniques to model potential
threats and security measures. Paja et al. [27] provide reasoning techniques for
detecting inconsistencies among security requirements. [9,10], base their work on
security problem frames, which are patterns that classify security software devel-
opment problems related to security and support developers in analyzing them.
Lamsweerde [28] provides an extension of the KAOS approach, where security
goals are refined until they become precise and represent security requirements.
Then, once alternative countermeasures have been identified the NFR qualitative
framework is employed to support the selection process according to how critical
the security goal been threatened is and how well the countermeasure meets the
other non-functional requirements. However, these approaches focus on the elic-
itation and analysis of security requirements and they do not explicitly consider
the concept of security mechanism. As such, they lack a clear definition between
the security requirements/security mechanisms relationship and lack support in
attributing financial cost. In contrast, our selection algorithm has been inte-
grated into the security requirements engineering process, and as such, derives
a set of security mechanisms that satisfy identified security requirements based
on preferable criteria, which are set by the requirements engineer. As discussed
in the introduction, we believe that such alignment is very important where se-
curity requirements can frequently evolve, and there is a plethora of available
security mechanisms. It is only when there is a clear relationship between secu-
rity requirements, security mechanisms, and potential trade-off factors (such as
cost and benefit of such mechanisms) that the decision is fully supported with
the right evidence. Our approach not only provides an alignment between the
what and why (security requirements) with the how (security mechanisms), but
also a quantitative method that enables requirements engineers to cope with the
complexity of selecting the optimal combination of security countermeasures in
a systematic way.

In addition, there is a line of research in the area of security risk assess-
ment [29–31] where there is identification, assessment, and mitigation of risks to
security mechanisms that will endanger the satisfaction of security requirements.
However, the risk are investigated in isolation with limited support for cost/ben-

efit trade-off analysis. In [32] although the security solution design trade-off is
addressed, there is no clear alignment of the security solutions with the security
requirements. The literature also provides research related to the selection of
security mechanisms during the run-time of a system, such as [e.g. [20], [33]] as
well as from the Decision support area, such as [11–14]. However, these works
are heavily based on risk management and in most cases, the selection criteria
are the financial cost of a mechanism and its effectiveness in blocking an attack,
the potential impact (i.e. risk) and the attack success likelihood. However, they
offer limited support to identify security requirements, and most importantly
the security mechanisms are not linked to the security requirements. Therefore,
the selection algorithms do not consider which security requirement a security
mechanism satisfies and also what the importance of that requirement is. More-
over, although useful during run time, such approaches entail that a wide range
of security mechanisms are acquired and implemented without considering their
financial cost.

3 Secure Tropos

The Secure Tropos methodology [7] is based on the principle that security should
be analysed and considered from the early stages of the software system develop-
ment process, and not added as an afterthought. To support that approach, the
methodology provides a modelling language, a security-aware process, and a set
of automated processes to support the analysis and consideration of security from
the early stages of the development process. The Secure Tropos language consists
of a set of concepts from the requirements engineering domain, and in particular
Goal-Oriented Requirements Engineering [34,35], such as actor, goal, plan, and
dependency, which are enriched with concepts from security engineering, such as
security constraint, secure plan, and attacks. An actor [35], represents an entity
that has intentionality and strategic goals within the software system or within
its organisational setting. Within a network of actors, which is usually the case
in large software systems with multiple stakeholders, one actor might depend on
another actor for a goal, a plan or a resource. A goal [35] represents a condition
in the world that an actor would like to achieve. In other words, goals represent
actor’s strategic interests. A plan represents, at an abstract level, a way of doing
something [35]. The fulfilment of a plan can be a means for satisfying a goal.
As such, different alternative plans, that actors might employ to achieve their
goals, are modelled to enable software engineers to reason about the different
ways that actors can achieve their goals, and decide upon the optimal way. A
resource [35] presents a physical or informational entity that one of the actors
requires. The main concern when dealing with resources is whether the resource
is available, and who is responsible for its delivery.

In line with existing literature [6, 36, 37], we define security requirements as
constraints on specific functions of a system. Towards this end, security require-
ments are represented, in Secure Tropos, as Security Constraints. A Security
Constraint is defined as a security condition imposed to an actor that restricts
the achievement of an actor’s goals, the execution of plans or the availability

of resources. To support the analysis and evaluation of the developed security
solution, the modelling language supports the modelling of security attacks. An
attack is an action that might cause a potential violation of security in the sys-
tem (this definition has been adopted by Matt Bishop’s definition of a computer
attack). Within the context of an attack, an attacker represents a malicious
actor that is interested in attacking the system. As described above, an actor
has intentionality and strategic goals within the system. In the case of an at-
tacker, these are related to breaking the security of a system, and identifying and
executing malicious goals. To support the modelling of an actor by depending
on another actor for a security constraint, Secure Tropos introduces the idea of
Secure Dependency. A Secure Dependency introduces one or more Security Con-
straints that must be fulfilled for the dependency to be valid. Vulnerabilities are
defined as weaknesses or flaws, in terms of security, that exist from a resource,
an actor and/or a goal. Vulnerabilities are exploited by threats, as an attack or
incident within a specific context. It is worth stating that legitimate actors might
unintentionally introduce vulnerabilities to a system due to failure or mistakes.
Threats pose potential loss or indicate problems that can put the system at risk.
On the other hand, actors within the system environment have single or multiple
goals. The process in Secure Tropos is one of analysing the security needs of the
stakeholders and the system in terms of security constraints, imposed on the
stakeholders and the system, identifying relevant security threats and attacks
and analyse and identify potential countermeasures against those attacks.

4 Proposed Extensions

In this section we discuss how we have extended the Secure Tropos methodology.
We first discuss the extensions to the modelling language, we then mathemati-
cally formulate some of the Secure Tropos components, and finally, we present
a new Secure Tropos process.

The modelling language of Secure Tropos, as briefly described in the previ-
ous section, is extended with concepts and links required to model and analyse
security countermeasures, but also to create models that have a clear explicit
alignment between security constraints and security countermeasures. The up-
dated meta-model of the Secure Tropos language is shown in Fig. 1.

When a Security Constraint is introduced, further analysis is required to
establish if and how this constraint can be satisfied. A Security Objective rep-
resents an objective that is assigned to an actor, and it indicates a course of
action that the actor needs to follow to satisfy one or more security constraints,
whose satisfaction by a security objective is defined through a Satisfies re-
lationship. Countermeasures are defined in our approach in terms of security
mechanisms. These represent standard security methods, which contribute to the
satisfaction of the security objectives. Some of these methods are able to prevent
security attacks, whereas others are able only to detect security breaches.

In the following, we introduce some mathematical notation that helps to for-
malise the above Secure Tropos concepts. Assume C a set of security constraints,
and O a set of security objectives. Each security constraint can be satisfied by

1

has
Actor

Dependum

Dependency

Malicious Actor

+sa�sfiability() : float

+NFR cost() : float

Security Constraint

Security Objec ve

So!goal

Goal

Resource

Plan

Restricts

-sa�sfiability weight : float

Sa fies

from

from

to

to

to

to

has

has

has

has

imposed to

contains

dependee depender

1
1

1

1

1

1
0..*

0..*0..*

0..*

1

1..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1

1

1

1

1

0..*

0..*

0..*

Threat

-financial cost : float

Security Mechanism

1

1

to

Vulnerability

affects

0..*

1

0..*

A"ack Method

-preventable : Boolean

Exploits

1

1..*

poses

0..*0..*

1

1

1

affects affects

1..*

1..*

1

1

0..*0..*

fromto

embodied by

Protects

from

0..*

1

to

-benefit : float

-NFR cost : float

Implements

from

0..*

0..*

Impacts

1

0..*

1

from

1

1

1

0..*

0..*

0..*

to

to

to

Mi gates

1

0..*

0..*1

from

to

Requires Creates

11from

from

0..*0..*

11

to

to

11
from

from

from

11

0..*

0..*

0..*

0..* 0..*0..*

to

Fig. 1. A part of the Secure Tropos metamodel.

one or more security objectives. A security objective j contributes to the satis-
faction of a constraint i at some degree wji ∈ [0, 1], which is called satisfiability
weight, with the property that

∑
j wji = 1. For example, when objective j does

not satisfy constraint i (i.e. no Satisfies link exist between j, i), then wji = 0.
Each objective can be implemented by different mechanisms or combination

of security mechanisms. In order to represent a combination of security mecha-
nisms that are required for the implementation of a security objective we intro-
duce the notion of a security package. This consists of either one security mecha-
nism or a set of mechanisms connected with an AND decomposition. For a setM
of mechanisms, any package z is modelled by the vector pz := [pqz] ∈ {0, 1}|M|,
where pqz equals 1 when mechanism q is included in package z, and 0 otherwise.
We define the set P := {pz} of π security packages that exist in the model. A
security package z contributes to the implementation of a security objective j,
and we define its degree of contribution as follows:

Definition 1 (Benefit). Benefit is defined as the degree of implementation of
a security objective by a security package.

We model the benefit of package z to objective j, by bzj ∈ [0, 1]. For example, if
package z does not implement objective j then bzj = 0. In this case, there is no
Implements link between z and j.

Definition 2 (Satisfiability). We define the satisfiability of a security con-
straint i as si :=

∑
j

∑
z wji bzj.

As a security constraint mitigates one or more security threats, the satisfiability
of a security constraint determines the mitigation degree of these threats. It
is intuitive that the higher the satisfiability the higher the system protection
against these threats. Furthermore, each security package comes also with a cost
value, defined as follows:

Definition 3 (Financial Cost). Each security package z has a financial cost
value fz, which refers to potential monetary expenses for acquiring, developing,
maintaining, and operating its security mechanisms.

Definition 4 (Non-Functional Requirements Cost). Each security pack-
age z has a non-functional requirements cost value ηz, which is the cost incurred
to non-functional system requirements by the implementation of security mecha-
nisms that comprise this package. This cost can be seen as the negative impact of
the security package to, for example, usability, performance, and scalability [38].

In the rest of this section, we discuss the newly defined security-aware pro-
cess, which extends the Secure Tropos process. The extended process supports
security requirements engineers with the selection of a set of security packages
that fulfil identified security constraints. Given the fact that most of the secu-
rity packages have different benefits and costs, there are multiple combinations
of them that might satisfy the identified security requirements. As such, the aim
of the engineer is to derive a set of security packages that: (i) meet a minimum
satisfiability and a maximum NFR cost, which are set by the requirements en-
gineer during the Secure Tropos modelling process; (ii) its financial cost can be
covered by an available budget; (iii) is “optimal”, based on a cost-benefit analysis,
given the different satisfiability weights.

As part of the new process, after eliciting the security constraints following
the traditional Secure Tropos process [3,7], the requirements engineer, with input
from the system stakeholders, sets a minimum satisfiability αi, and a maximum
acceptable non-functional requirements cost βi for each constraint i, and the
different satisfiability weights. Furthermore, the requirements engineer, with the
support of a security engineer, identifies the set P of available security packages
that implement the system security objectives O, along with the benefit values
bzj of each package z to each objective j. It is worth stressing here that, the
process assumes the selection of only one security package per objective. This
assumption does not restrict the number of security mechanisms that can be
selected for the implementation of an objective, as a security package can be
the composition of any security mechanisms. Finally, the requirements engineer,
with input from the system stakeholders, provides a maximum available financial
budget Φ to cover the financial cost of the selected security packages.

To correlate a security objective j with only one of the security packages that
implement this objective, representing a possible solution for the implementation
of this objective, we define the vector xj := [xzj] ∈ {0, 1}π, s.t.

∑
z xzj =

1. When package z is selected to implement objective j, then xzj = 1, and
hence xj = [0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
π−j

]. A complete solution, denoted by X, consists of

combinations of different xj covering the entire range of objectives. We formally
denote a solution by X = [x1,x2, . . . ,xρ]. The goal of the requirements engineer
is to select an X such that:

(C-I) for each constraint i ∈ C, αi and βi are satisfied by packages in X;
(C-II) the sum of costs of all selected packages, which comprise X, are within the

available budget Φ;
(C-III) X is optimal according to a cost-benefit analysis, which considers the non-

functional requirements costs of packages that comprise X, and their benefit
values.

To support the aforementioned security-aware process of Secure Tropos, and
utilise the newly defined modelling language, we must solve a multi-objective
optimisation problem using the OptiMathSAT [39] tool. The solution satisfies
criteria C-I, C-II, and C-III, mentioned in the previous section. To facilitate
the cost-benefit analysis, which is part of C-III, we introduce the notion of the
utility of a security constraint.

Definition 5 (Utility). For a given X, we define the utility ui(X) of a con-
straint i as ui(X) := si(X)

ηi(X) .

In the following we discuss the computation of si(X) and ηi(X). From Def-
inition 2 we can deduce that si(X) :=

∑
j

∑
z wji xzj bzj . In order to repre-

sent the objectives that satisfy each security constraint we define the latter as
the vector ci := [cji] ∈ {0, 1}ρ,∀ i ∈ C. By having this, we can now define
the total non-functional requirements cost for a specific constraint as ηi(X) :=∑
j

∑
z cji xzj ηz. We can also derive the financial cost of a solutionX as f(X) :=∑

j f(xj) =
∑
j

∑
z xzj fz. We finally compute the optimal solution X∗ by solv-

ing the following optimisation problem:

max
X

∑
i

Ii ui(X)

s.t.
∑
i

Ii = 1

f(X) ≤ Φ
si(X) ≥ αi,∀i.
ηi(X) ≤ βi,∀i,

where Ii signifies the importance of a security constraint to the system, and it
is defined by the requirements engineer, in each case.
5 Case Study

In order to exhibit the applicability of our approach, this section describes how
our approach can be applied on the real life case study of the established Greek
national e-prescription system [40]. This is a cloud-based system, which is cur-
rently used by Greek healthcare professionals to handle patients’ electronic med-
ication and clinical tests prescriptions. Medical practitioners, regardless of spe-
cialty, can create an electronic prescription document, which can then be fulfilled,

by using the same platform, by any pharmacist or clinic staff. The healthcare
professionals access the e-prescription system via an online portal. The back-
end of the system has been created, and it is also maintained, by a non-profit
organisation, which is in charge of the e-governance infrastructure of the Greek
Ministry of Health. The system was introduced in October 2010, as a pilot, for
one healthcare provider. By May 2012, the system was fully released, and it sup-
ported all registered Greek healthcare providers. It is estimated that the system
handles over 500 thousand prescriptions on a daily basis, accommodating over
ten thousand pharmacists and thirty eight thousand medical practitioners [41].

It is worth noting that in this paper, we focus on the main functionalities
of the e-prescription system and its security requirements, as described in the
relevant act of the Greek parliament [40]. Following the extended Secure Tropos
modelling language and security-aware process we have elicited the main security
requirements, in terms of security constraints, of the system along with security
mechanisms as depicted in Fig. 2. To help with the creation of the model, we have
used the SecTro tool. SecTro is a tool for the Secure Tropos methodology based
on the ADOxx meta-modelling platform [42], which supports the requirements
engineer in creating Secure Tropos models, according to the language metamodel,
and it provides a set of analysis functionalities such as identifying security con-
straints that are not satisfied, and threats that are not mitigated. The rest of
this section, describes the application of our work to the case study.

As shown in Fig. 2, for a healthcare professional to get access to the sys-
tem, a user registration process must be completed. To this end, the users must
provide a number of personal information, before they are given their login cre-
dentials. This fulfils the system goal of “Register system users”. The main func-
tionality of the e-prescription system is the handling of the prescription docu-
ments from their creation to their fulfilment, as indicated by the goal “Handle
prescription documents”. This process is initiated when a patient visits a medi-
cal practitioner, and the latter decides to prescribe some medical treatment, in
the form of medication or clinical tests. Patient Information is accessed from
the system via a unique patient identification number and it is included in each
Prescription Document along with the prescribed treatment. A prescription is
fulfilled when a patient receives consultation or treatment by a pharmacy or a
clinic. Each prescription document that a healthcare professional handles can
later be accessed via a personal archive. This is maintained by the system, and
it generates the system goal “Archive prescription documents”.

The security requirements of the e-prescription system are described in the le-
gal framework of the e-prescription system [40] and modelled in our approach as
security constraints. These constraints are satisfied through the implementation
of security objectives as shown in Fig. 2. In particular, the security constraint
“Authorised access only” aims to ensure that only registered users access and op-
erate the system. This constraint is satisfied by the security objectives “Authen-
tication” and “User Authorisation”. Similarly, the security constraint “Correct
data received and stored ” restricts the creation, fulfilment and access to prescrip-
tion documents, aiming to ensure the integrity of the information stored in the

Table 1. Security packages.

Package Mechanism Package Mechanism

p1 m1 (DoS protection) p2 m2 (2-way mirroring)
p3 m3 (3-way mirroring) p4 m4 (RAID5)
p5 m1 ∧ m2 p6 m1 ∧ m3
p7 m1 ∧ m4 p8 m5 (Symmetric encryption)
p9 m6 (Asymmetric encryption) p10 m7 (Network-based IDS)
p11 m8 (Host-based IDS) p12 m5 ∧ m7
p13 m5 ∧ m8 p14 m6 ∧ m7
p15 m6 ∧ m8 p16 m9 (Role-based AC)
p17 m10 (Rule-based AC) p18 m11 (Username/Password)
p19 m12 (Smart card) p20 m13 (Biometrics)
p21 m11 ∧ m14: (m14 Anti-logging)

system. This is satisfied by the implementation of the “Data Integrity” security
objective. “Confidentiality of personal information” requires that the sensitive
and personal patient information contained in a prescription document must be
accessed only by authorised system users, and it is satisfied by the implementa-
tion of the security objective “Confidentiality”. Finally, the security constraint
“System always available”, satisfied by the “Availability” security objective, en-
sures the uninterrupted functionality of the e-prescription system, regardless of
potential infrastructure technical issues or targeted attacks launched against it.

In our work, the aforementioned security objectives are implemented by an
optimal set of security packages derived solving a multi-objective optimisation
problem. As there is an one-to-one mapping between packages and mechanisms,
the afore optimal set can be translated to a set of optimal security mecha-
nisms. Starting from the “Authentication” objective, this can be implemented by
the use of “Username / Password ” mechanism. A security package can contain
this mechanism along with an “Anti-logging control ” mechanism. Other alterna-
tive security packages that provide user authentication could implement the use
of “Smart card ” or “Biometrics” mechanisms. Similarly, for the “User Authori-
sation” security objective, there is a choice between “Role-based Access Control ”
(RBAC) or “Rule-based Access Control ” (RAC). According to this, each user has
access only to specific system information and functionalities.

Different encryption mechanisms (i.e. “Symmetric” or “Asymmetric Encryp-
tion”) can be implemented in security packages to contribute towards the achieve-
ment of both “Data Integrity” and “Confidentiality” security objectives. These
security packages can contribute towards both objectives, as they can protect
transmitted information from being accessed and modified by unauthorised users. In
addition to encryption, “Intrusion Detection Systems” (IDS) can be deployed for
the implementation of the “Data Integrity” objective. Thus, “Host-based IDS ”
or “Network-based IDS ” can be standalone security packages or they can be
combined with encryption mechanisms.

Finally, the security objective “Availability” can be achieved by creating re-
dundancy at the system infrastructure. Therefore, different types of disk mirror-
ing can be implemented (e.g. “2-way mirroring”, “3-way mirroring” or “RAID
5 ”) to ensure the uninterrupted functionality of the system and the availability
of the stored data. Alternative to disk mirroring solutions, can be packages that
offer protection against denial of service attacks (“DoS Protection”). This mech-
anism can be implemented along with redundancy mechanisms to form security
packages able to enforce the “Availability” objective.

Fig. 2. Security analysis of part of the Greek national e-prescription system

To set the different costs and benefits of the security packages we have com-
bined information found in scientific literature, technical reports, and pricing
of commercial security solutions. As an example, literature suggests that while
solutions using biometrics are the most secure as opposed to simple passwords
or smart card authorisation, they lack in usability and deployability [43]. How-
ever, commercial applications used for managing biometric authorisation entail
a high financial overhead, due to the infrastructure required at each end-user’s
terminal. Based on these insights, appropriate values are assigned to these pack-
ages resulting in the highest benefit values for “Biometrics” among the 3 available
packages, followed by “Smart Cards” and finally “Username/Password”. Similarly,
due to the high financial and NFR costs associated with them, “Biometrics” also
receive the highest cost value compared to the alternative mechanisms. Similar
value assignment activities were followed for each of the security packages.

We have undertaken simulations to derive the optimal set of security pack-
ages for different financial budgets, as presented in Table 2. The format of the
solution in this table is given by the tuple [px, . . . ,py], where its i-th element
represents the security package that implements the security objective i, where

Table 2. Simulation Results

Budget Solution Utility Satisf. values NFR costs Utilities Cost

190 [p7,p9,p9,p16,p21] 2.324 0.7, 0.8, 0.5, 0.67 0.4, 0.2, 0.2, 0.35 1.75, 4, 2.5, 1.914 190
[p6,p9,p9,p16,p21] 2.317 0.6, 0.8, 0.5, 0.67 0.35, 0.2, 0.2, 0.35 1.714, 4, 2.5, 1.914 190

230
[p7,p9,p9,p16,p19] 2.38 0.7, 0.8, 0.5, 0.74 0.4, 0.2, 0.2, 0.35 1.75, 4, 2.5, 2.114 230
[p6,p9,p9,p16,p19] 2.38 0.6, 0.8, 0.5, 0.74 0.35, 0.2, 0.2, 0.35 1.714, 4, 2.5, 2.114 230
[p7,p9,p9,p16,p21] 2.324 0.7, 0.8, 0.5, 0.67 0.4, 0.2, 0.2, 0.35 1.75, 4, 2.5, 1.914 190

260
[p7,p9,p13,p16,p21] 2.524 0.7, 0.8, 0.9, 0.67 0.4, 0.2, 0.3, 0.35 1.75, 4, 3, 1.914 260
[p6,p9,p13,p16,p21] 2.517 0.6, 0.8, 0.9, 0.67 0.35, 0.2, 0.3, 0.35 1.714, 4, 3, 1.914 260
[p7,p9,p9,p16,p19] 2.38 0.7, 0.8, 0.5, 0.74 0.4, 0.2, 0.2, 0.35 1.75, 4, 2.5, 2.114 230

300
[p7,p9,p13,p16,p19] 2.584 0.7, 0.8, 0.9, 0.74 0.4, 0.2, 0.3, 0.35 1.75, 4, 3, 2.114 300
[p6,p9,p13,p16,p19] 2.577 0.6, 0.8, 0.9, 0.74 0.35, 0.2, 0.3, 0.35 1.714, 4, 3, 2.114 300
[p7,p9,p13,p16,p21] 2.524 0.7, 0.8, 0.9, 0.67 0.4, 0.2, 0.3, 0.35 1.75, 4, 3, 1.914 260

i ∈ [1, 5]. In the same table, we see that for each financial budget more than
one set of packages are given; the optimal, the second optimal, and the third
optimal, whenever available. This is because we believe that the requirements
engineer, might want to have an idea of the alternative solutions if he wishes,
for instance, to reduce the financial budget. We have restricted our results to
the best 3 sets, because these might be indicative of the available alternatives. It
is obvious that, if the requirements engineer desires to reduce the budget fur-
ther, then another execution of the program is required. Table 1 facilitates the
results discussion by summarising all security packages, of our case study, along
with the mechanisms that constitute them. It is worth noting that as mecha-
nisms represent the fundamental notion of security implementations, they are
the building blocks of security packages. Hence, there is no sense in combining
different alternative packages that implement a security objective, when instead
we can combine different mechanisms, by using an AND relationship, to form a
new security package.

In our simulations, we have varied the financial budget from very low val-
ues and we were increasing this, by using a step of 10 units, until we reach a
point where an additional budget provides no improvement in the optimal set
of the packages. By using Fig. 2 and Table 1, it is trivial to see the exact se-
curity mechanisms that constitute each solution. First, we observed that the
minimum financial budget required to satisfy the system security requirements,
was 190. This allows two solutions with the same financial cost but with the
[p7,p9,p9,p16,p21], to perform better. The next financial budget that allows
a new solution, i.e. [p7,p9,p9,p16,p19], is 230. In this case, we notice a 7%
improvement of the satisfiability of the fourth security constraint, as opposed to
the case where the budget was 190. It is worth noting here that this improvement
comes with no increment to any of the non-functional requirements costs. The
next budget level that introduces a different solution, and improves security, as
determined by its 2.524 utility value, is the [p7,p9,p13,p16,p21]. This solution
costs 30 extra financial units, but improves the satisfiability of the third secu-
rity constraint by 40%. Finally, the highest performance is achieved when the
budget equals 300, where the optimal solution is [p7,p9,p13,p16,p19]. In other
words, the simulation results show that any budget value higher than 300 does
not improve security.

6 Conclusion

The selection of appropriate security mechanisms that satisfy the security re-
quirements under a limited budget is an important task, as it determines the final
security level of a system. Furthermore, a major consideration when selecting se-
curity mechanisms is to maximise the satisfaction of security requirements while
minimising their negative side effects to other non-functional requirements. De-
spite its importance, the computation of an optimal set of security mechanisms is
not a straightforward task due to the large decision space. This paper presents a
twofold extension of Secure Tropos methodology. First, the relationship between
security requirements and security mechanisms is explicitly shown to enable a
better understanding and alignment. To this end, the modelling language was
enriched with the new concepts so that requirements engineers have a clear un-
derstanding of the relationship between what the system needs to do in terms of
security, i.e. security requirements, and how they system will do it, i.e. security
mechanisms. Second, the Secure Tropos process was enriched with a selection
process that enables requirements engineers to derive an optimal set of security
packages, which, in effect, is a set of preferable security mechanisms. This set
maximises the overall satisfaction of the system’s security requirements while
respecting a set of criteria, which the engineer sets during the analysis of the
system, and a given financial budget. For this purpose, the relevant modelling
concepts were defined mathematically to support formal analysis. In this paper,
the optimal set of security mechanisms corresponds to a baseline security solu-
tion. In the future, we aim to undertake a risk assessment to inform selection. In
this way, the requirements engineer will perform threat and vulnerability anal-
ysis, update the Secure Tropos model, and then execute selection to derive the
set of security mechanisms that maximise the overall system security.

References

1. McDermott, J., Fox, C.: Using abuse case models for security requirements analysis.
In: Computer Security Applications Conference, 1999.(ACSAC’99) Proceedings.
15th Annual. pp. 55–64. IEEE (1999)

2. Basin, D., Doser, J., Lodderstedt, T.: Model driven security for process-oriented
systems. In: Proceedings of the eighth ACM symposium on Access control models
and technologies. pp. 100–109. ACM (2003)

3. Mouratidis, H.: Integrating Security and Software Engineering: Advances and Fu-
ture Visions: Advances and Future Visions. Igi Global (2006)

4. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Arguing satisfaction of security
requirements. Integrating Security and Software Engineering: Advances and Future
Visions pp. 16–43 (2006)

5. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements engineering 15(1), 7–40 (2010)

6. Dubois, E., Mouratidis, H.: Guest editorial: security requirements engineering:
past, present and future. Requirements engineering 15(1), 1–5 (2010)

7. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285–309 (2007)

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements. Soft-
ware Engineering (2000)

9. Hatebur, D., Heisel, M.: Problem frames and architectures for security problems.
In: Computer Safety, Reliability, and Security, pp. 390–404. Springer (2005)

10. Hatebur, D., Heisel, M., Schmidt, H.: Security engineering using problem frames.
In: Emerging Trends in Information and Communication Security, pp. 238–253.
Springer (2006)

11. Gupta, M., Rees, J., Chaturvedi, A., Chi, J.: Matching information security vulner-
abilities to organizational security profiles: a genetic algorithm approach. Decision
Support Systems 41(3), 592–603 (2006)

12. Neubauer, T., Pehn, M.: Workshop-based risk assessment for the definition of se-
cure business processes. In: Information, Process, and Knowledge Management,
2010. eKNOW’10. Second International Conference on. pp. 74–79. IEEE (2010)

13. Viduto, V., Maple, C., Huang, W., López-Peréz, D.: A novel risk assessment and
optimisation model for a multi-objective network security countermeasure selection
problem. Decision Support Systems 53(3), 599–610 (2012)

14. Sawik, T.: Selection of optimal countermeasure portfolio in it security planning.
Decision Support Systems 55(1), 156–164 (2013)

15. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning tech-
niques for goal models. In: Journal on Data Semantics I, pp. 1–20. Springer (2003)

16. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. International
Journal of Intelligent Systems 25(8), 841–877 (2010)

17. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. In: ACM SIGSOFT Software Engineering
Notes. vol. 29, pp. 53–62. ACM (2004)

18. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing cooperative is: Exploring and
evaluating alternatives. In: On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, pp. 533–550. Springer (2006)

19. Kaiya, H., Horai, H., Saeki, M.: Agora: Attributed goal-oriented requirements anal-
ysis method. In: Requirements Engineering, 2002. Proceedings. IEEE Joint Inter-
national Conference on. pp. 13–22. IEEE (2002)

20. Bencomo, N., Belaggoun, A.: Supporting decision-making for self-adaptive systems:
from goal models to dynamic decision networks. In: Requirements Engineering:
Foundation for Software Quality, pp. 221–236. Springer (2013)

21. Feather, M.S., Cornford, S.L., Hicks, K., Kiper, J.D., Menzies, T., et al.: A broad,
quantitative model for making early requirements decisions. Software, IEEE 25(2),
49–56 (2008)

22. Heaven, W., Letier, E.: Simulating and optimising design decisions in quantita-
tive goal models. In: Requirements Engineering Conference (RE), 2011 19th IEEE
International. pp. 79–88. IEEE (2011)

23. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based secu-
rity requirements engineering process for the development of secure information
systems. Computer Standards & Interfaces 29(2), 244 – 253 (2007)

24. Mead, N.R., Stehney, T.: Security quality requirements engineering (square)
methodology. SIGSOFT Softw. Eng. Notes 30(4), 1–7 (May 2005)

25. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1), 34–44 (Jan 2005), http://dx.doi.org/10.1007/s00766-004-0194-4

26. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within
a social setting. In: Requirements Engineering Conference, 2003. Proceedings. 11th
IEEE International. pp. 151–161 (Sept 2003)

27. Paja, E., Dalpiaz, F., Giorgini, P.: Managing security requirements conflicts in
socio-technical systems. In: Conceptual Modeling, pp. 270–283. Springer (2013)

28. Van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: Proceedings of the 26th International Conference on Soft-
ware Engineering. pp. 148–157. IEEE Computer Society (2004)

29. Franqueira, V.N., Tun, T.T., Yu, Y., Wieringa, R., Nuseibeh, B.: Risk and argu-
ment: a risk-based argumentation method for practical security. In: Requirements
Engineering Conference (RE), 2011 19th IEEE International. pp. 239–248. IEEE
(2011)

30. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements
engineering. Requirements Engineering 16(2), 101–116 (2011)

31. Lee, S.W.: Probabilistic risk assessment for security requirements: A preliminary
study. In: Secure Software Integration and Reliability Improvement (SSIRI), 2011
Fifth International Conference on. pp. 11–20. IEEE (2011)

32. Houmb, S.H., Georg, G., Jürjens, J., France, R.: An integrated security verification
and security solution design trade-off analysis approach. Integrating Security and
Software Engineering: Advances and Future Visions/Mouratidis, Haralambos pp.
190–219 (2007)

33. Tsigkanos, C., Pasquale, L., Menghi, C., Ghezzi, C., Nuseibeh, B.: Engineering
topology aware adaptive security: Preventing requirements violations at runtime.
In: Requirements Engineering Conference (RE), 2014 IEEE 22nd International.
pp. 203–212. IEEE (2014)

34. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Sympo-
sium on. pp. 249–262. IEEE (2001)

35. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

36. Sommerville, I., Kotonya, G.: Requirements engineering: processes and techniques.
John Wiley & Sons, Inc. (1998)

37. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security requirements engi-
neering: A framework for representation and analysis. Software Engineering, IEEE
Transactions on 34(1), 133–153 (2008)

38. Cysneiros, L.M., Sampaio do Prado Leite, J.C.: Nonfunctional requirements: From
elicitation to conceptual models. Software Engineering, IEEE Transactions on
30(5), 328–350 (2004)

39. Sebastiani, R., Trentin, P.: Optimathsat: A tool for optimization modulo theories
40. Greek-Parliament: Act 3892: Electronic registration and fulfilment of medical pre-

scriptions and clinical test referrals. FEK 189(1), 4225–4232 (November 2010)
41. Sfyroeras, V.: The electronic prescription system. Pharmacy management and

communications pp. 68–69 (September 2012), http://www.idika.gr/files/
synenteyxeis/arthro_pharmacy_management_09.12.pdf

42. Adoxx Meta-modeling platform, available at http://www.adoxx.org
43. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace

passwords: A framework for comparative evaluation of web authentication schemes.
In: In Proceedings of the 33rd IEEE Symposium on Security and Privacy. San
Francisco, CA, USA (May 2012)

