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Abstract

1 Device-to-Device (D2D) communication is expected to be a key feature sup-
ported by 5G networks, especially due to the proliferation of Mobile Edge Com-
puting (MEC), which has a prominent role in reducing network stress by shifting
computational tasks from the Internet to the mobile edge. Apart from being part
of MEC, D2D can extend cellular coverage allowing users to communicate di-
rectly when telecommunication infrastructure is highly congested or absent. This
significant departure from the typical cellular paradigm imposes the need for de-
centralised network routing protocols. Moreover, enhanced capabilities of mobile
devices and D2D networking will likely result in proliferation of new malware
types and epidemics. Although the literature is rich in terms of D2D routing
protocols that enhance quality-of-service and energy consumption, they provide
only basic security support, e.g., in the form of encryption. Routing decisions can,
however, contribute to collaborative detection of mobile malware by leveraging
different kinds of anti-malware software installed on mobile devices. Benefiting
from the cooperative nature of D2D communications, devices can rely on each
other’s contributions to detect malware. The impact of our work is geared to-
wards having more malware-free D2D networks. To achieve this, we designed and
implemented a novel routing protocol for D2D communications that optimises
routing decisions for explicitly improving malware detection. The protocol iden-
tifies optimal network paths, in terms of malware mitigation and energy spent
for malware detection, based on a game theoretic model. Diverse capabilities of
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network devices running different types of anti-malware software and their po-
tential for inspecting messages relayed towards an intended destination device
are leveraged using game theoretic tools. An optimality analysis of both Nash
and Stackelberg security games is undertaken, including both zero and non-zero
sum variants, and the Defender’s equilibrium strategies. By undertaking net-
work simulations, theoretical results obtained are illustrated through randomly
generated network scenarios showing how our protocol outperforms conventional
routing protocols, in terms of expected payoff, which consists of: security damage
inflicted by malware and malware detection cost.

Keywords: Device-to-Device (D2D) communications, iRouting protocol,
Malware detection games, Game theory.

1. Introduction

Demand for anytime-anywhere wireless broadband connectivity and increas-
ingly stringent Quality of Service (QoS) requirements pose new research chal-
lenges. As mobile devices are capable of communicating in both cellular (e.g. 4G)
and unlicensed (e.g. IEEE 802.11) spectrum, the Device-to-Device (D2D) net-
working paradigm has the potential to bring several immediate gains. Network-
ing based on D2D communication [1, 2, 3, 4, 5] not only facilitates wireless and
mobile peer-to-peer services, but also provides energy efficient communications,
locally offloading computation, offloading connectivity, and high throughput. The
most emerging feature of D2D is the establishment and use of multi-hop paths to
enable communications among non-neighbouring devices. In multi-hop D2D com-
munications, data are delivered from a source to a destination via intermediate
(i.e. relaying) devices, independently of operators’ networks.

1.1. Motivation

To motivate the D2D communication paradigm, we emphasise the need for
localised applications. These run in a collaborative manner by groups of devices
at a location where telecommunications infrastructures: (i) are not present at
all, e.g. underground stations, airplanes, cruise ships, parts of a motorway, and
mountains; (ii) have collapsed due to physical damage to the base stations or
insufficient available power, e.g. areas affected by a disaster such as earthquake;
or (iii) are over congested due to an extremely crowded network, e.g. for events
in stadiums, and public celebrations. Furthermore, relay by device can be lever-
aged for commercial purposes such as advertisements and voucher distributions
for instance in large shopping centres. This is considered a more efficient way of
promoting businesses than other traditional methods such as email broadcast-
ing and SMS messaging due to the immediate identification of the clients in a
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surrounding area. Home automation and building security are another two areas
that multi-hop data delivery using D2D communications is likely to overtake our
daily life in the near future while multi-hop D2D could be also leveraged towards
the provision of anonymity against cellular operators [6].

A key question related to multi-hop D2D networks is, which route should the
originator of some data choose to send it to an intended destination?. This has
been exhaustively investigated in the literature of wireless and mobile ad hoc
routing with well-known protocol to be among others AODV [7], DSR [8], and
OLSR [9]. A thorough survey of standardisation efforts in this field has been
published by Ramrekha et al. [10].

Due to the myriad number of areas D2D communications are applicable to,
devices are likely to be an ideal target for attackers who aim to infect devices
with malware. Authors in [11] point out that malware in current smartphones
and tablets have recently rocketed and established its presence through advanced
techniques that bypass security mechanisms of devices. Malware can spread, for
instance, through a Multimedia Messaging System (MMS) with infected attach-
ments, or an infected message received via Bluetooth aiming at stealing users’ per-
sonal data or credit stored in the device. An example of a well-known worm that
propagates through Bluetooth was Cabir, which consists of a message containing
an application file called caribe.sis. Apart from malware infection, Khuzani et
al. [12] have investigated outbreaks of malware (i.e. malware epidemics) mainly
by adopting the notion of D2D communication. Finally, social engineering at-
tacks against mobile phones is one of the most serious threats, as presented in a
relevant survey here [13]. For thorough surveys on mobile malware one may refer
to [11, 14].

1.2. Innovation

In a nutshell,this paper presents a novel routing protocol, for D2D commu-
nications, that supports malware detection in an optimal way by using non-
cooperative game theoretic tools, which have been extensively used in the secu-
rity literature (e.g. [15]) and in D2D routing (e.g. [16]). Game theory has also
been used for other than routing purposes [17], [18, 19] in D2D networks. In this
paper we only focus on security games and we tackle a decision-making routing
challenge, in D2D networks, in presence of an adversary who injects malware
into the network, after she has compromised a gateway that connects the D2D
network with the cloud. This assumption is fairly realistic given the vast power
attackers have in their hands these days to successfully exploit vulnerabilities of
modern gateways. Our underlying network has been inspired by the Mobile Edge
Computing (MEC) (also refer to as Fog Computing) paradigm as a step towards
addressing security within the realm of an increasingly important area of 5G.
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Our protocol, called iRouting (abbreviating “intelligent Routing”), is de-
signed upon the theoretical analysis of a simple yet illuminating two-player se-
curity game between the Defender, which abstracts a D2D network, and the
Attacker, which abstracts any adversarial entity that wishes to inject malware
into the D2D network. We have proven that the Defender’s equilibrium strategies
leave the network better off, in terms of expected payoff, which is a combination
of security damage and malware detection cost (i.e. cycles process units). Note
that iRouting can work on top of underlying physical and MAC layer protocols
[20, 21].

It is worth noting that this paper does not tackle secure routing issues in
traditional ways. For a survey of secure routing protocols for wireless ad hoc
networks, see [22, 23]. Such protocols mainly aim at enabling confidentiality,
and integrity of the communicated data and they do not consider underlying
collaborative malware detection.

1.3. Progress beyond relevant work

This paper extends, in a significant manner, the results initially presented in
[24]. The exact differences are summarized below.

• [24] assumes a pure device-to-device network while in this paper the device-
to-device network has been enriched with a part of mobile edge comput-
ing. The network devices request services from the MEC server and multi-
hopping enables communication between the MEC server and the different
devices to overcome proximity issues due to the latter being outside the
transmission range of the server. In this paper, the security challenge is
how to safely utilise MEC services where a cluster-head (i.e. MEC server)
might be compromised by an adversary. Although this does not introduce
any new challenge in terms of malware detection and routing, it is an as-
sumption that places the idea of the paper within mobile edge computing
and 5G architectures.

• This paper assumes different mobile operating systems and these can be
infected with different types of malware as opposed to [24], which goes as
far as considering just a set of malicious messages that are sent from the
attacker’s device to infect the legitimate devices. This also has the effect of
defining, in this paper, the Malware Detection Game whereas in [24], the
defined game is called Secure Message Delivery Game.

• In [24], a confusion matrix is defined to determine how the different devices
of the network can detect malicious messages. In this paper here we take
a more realistic, in the terms of cyber security, approach where for each
device there is a probability to be compromised by malware. Therefore,
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each route has, in turn, a penetration level, which is the probability the
route to be compromised due to one or more devices on it being vulnerable.

• In [24], the details about the interdependencies of malicious message de-
tectors is not discussed, while in our paper here we explicitly say that
each control detects different signs of malware and no interdependencies, in
terms of detection capabilities, are assumed, i.e. we have assumed that an
anti-malware control is the minimal piece of software that detects certain
malicious signs.

• In [24], the Attacker is not assumed to monitor the network before launching
a malware attack (no reconnaissance) while in our paper here the Attacker
surveils the network before injecting malware giving us a Stackelberg game
to study.

• In [24], only Nash Equilibria (NE) and maximin strategies have been stud-
ied. On the other hand, our paper here derives Strong Stackelberg Equi-
libria (SSE) and shows the relationship among three of them; SSE, NE
and maximin. Not only that, but this paper exhibits much larger depth of
mathematical analysis referring also to best responses of players. Finally,
it proves the equality of strategies of different games, such zero-sum and
non-zero sum across all strategic types (Nash, Stackelberg, maximin).

• Although Panaousis et al. [24] has investigated both zero sum and non-zero
sum games, where in the latter the utility of the Attacker is a positive affine
transformation (PAT) of the defender’s utility, in this paper we go beyond
that. We show the equality of the different strategies holds in a more generic
(i.e. than the PAT case) payoff structure where the Attackers utility is a
strictly positive scaling of the Defender’s utility.

• All simulations in [24] were numeric; as well as they do not compare the
performance of the proposed routing protocol with other device-to-device
routing protocols. For the purposes of our paper here we have undertaking
a network simulation to compare the proposed protocol with legacy routing
protocols using the OMNeT++ network simulator. In this way we have
simulated physical and link-layer network characteristics.

• In our paper here, we have considered, in our simulations, the efficacies of
some of the most-recent real-world anti-malware controls against real-world
malware types as opposed to the purely numeric assignment to the different
variables.

• In our simulations here, we have included a new Attacker type, called
Weighted, which allows the adversary to distribute her resources propor-
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tionally, over the different routes, aiming at the highest expected dam-
age. This type of Attacker was not simulated in [24].

1.4. Main assumptions

Our analysis assumes that each device has some malware detection capabili-
ties (e.g. anti-malware software). Therefore, a device is able to detect malicious
application-level events. In other words, each device has its own detection rate
which contributes towards the overall detection rate of the routes that this de-
vice is part of. In order to increase malware detection, the route with the highest
detection capabilities must be selected to relay the message to the destination.

However, due to the different malware types available to attackers, these days,
such a decision is not trivial. One could argue that if we know the probability
of a malware type to be chosen, we can develop a proportional routing strategy,
which will distribute security risks across the different routes by choosing routes
in a proportional, to their malware detection capabilities, manner. Since this
knowledge can not be taken for granted in addition to the volatile nature of
such statistics, in this paper we use game theory to optimise routing decisions to
support malware detection in D2D networks, regardless of the probability of the
different malware to be used by the Attacker.

1.5. Outline

The remainder of this paper is organised as follows: In Section 2, we review
related work with more emphasis to be given in papers at the intersection of game
theory, security, and routing for wireless ad hoc networks (i.e. prominent example
of D2D networking). In Section 3, we present the system and game models, while
in Section 4, we devise game solutions. In Section 5, we undertake optimality
analysis which leads to a list of theoretic contributions. Section 6 describes, in
detail, the iRouting protocol, and in Section 7, we compare iRouting against
other routing protocols. Finally, Section 8 provides concluding remarks and points
towards future research.

2. Related work

In this section, we briefly review the state-of-the-art, in chronological or-
der, in terms of game theoretic approaches at the intersection of three fields:
security, routing, and device-to-device networks. Another set of game theoretic
works that focus on optimising intrusion detection strategies per se than adjust-
ing routing decisions to optimally support intrusion detection, consist of papers
such as [25], [26], [27], [27], [28], [29], [30], and [31]. Our work is complementary
to this literature as it optimises end-to-end path selections, in terms of malware
detection efficacy and computational effort.
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Looking more into decision regarding packet forwarding by using game theo-
retic tools and without incentive mechanisms in place, Felegyhazi et al. [32] have
studied the Nash equilibria of packet forwarding strategies with tit-for-tat punish-
ment strategy in an iterative game. In each stage (i.e. time slot) of the game, each
device selects its cooperation level based on the normalised throughput it experi-
enced in the previous stage. As opposed to iRouting, the authors do not propose
a new end-to-end routing protocol; instead they consider a shortest path algo-
rithm. Also, they assume the existence of internal malicious or selfish nodes in
contrast to our work here, which models an adversary outside of the D2D clus-
ter, who aims to infect legitimate devices with malware.

In a more security-oriented vein, Yu et al. [33] have used game theory to study
the dynamic interactions, in mobile ad hoc (device-to-device) networks, between
“good” nodes, which initially believe that all other nodes are not malicious, and
“adversaries”, which are aware of which nodes are good. They propose secure
routing and packet forwarding games that consist of 3 stages: route participa-
tion; route selection; and packet forwarding. In the first stage, a node decides
whether to be part of route or not; in the second phase, a node who wishes to
send a packet to a destination, after it discovers a valid route (called when all
nodes agree to be part of it), it either uses the discovered route or not; and, fi-
nally, in the third phase, each relay node decides to forward or not an incoming
packet. They have derived optimal defence strategies and studied the maximum
potential damage, which incurs when attackers find a route with maximum num-
ber of hops and they inject malicious traffic into it. The same authors also com-
bined this game with a secure routing game but without considering noise and
imperfect monitoring. Yu et al. [34] extended [33] and proposed a secure cooper-
ation game under noise and imperfect monitoring. Likewise, Yu and Liu tackled
the same challenge and presented a richer set of performance evaluation results in
[35]. The above publications do not tackle the same challenge with iRouting, as
they do not investigate the selection of a route among an available set of routes
to deliver packets from a source to a destination

Finally, in [36], Panaousis and Politis present a routing protocol that respects
the energy spent by intrusion detection on each route and therefore prolonging
network lifetime. This paper takes a simple approach, according to which the
attacker either attacks or not a route, and the Defender, likewise, decides whether
to allocate resources to defend or not.

None of the aforesaid protocols consider the propagation of malware within
the network and none of these works investigates Stackelberg games, which ba-
sically assume that the Attacker conducts surveillance before deciding upon her
strategy. This is a reasonably realistic assumption when looking at the intelli-
gence of cyber hackers and it is a conventional decision in other security related
fields [37, 38, 39, 40].
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3. System description and game model

This section presents our underlying system model along with its compo-
nents. Mobile-edge computing (MEC) is an emerging paradigm that allows mobile
applications to offload computationally intensive workloads to a MEC server. This
introduces a new network architecture concept that provides cloud-computing ca-
pabilities at the edge of the mobile network. The MEC server is likely to be setup
by a service provider to ensure that it can provide a service environment with
very low latency and high-bandwidth.

3.1. System description

We use a motivational paradigm demonstrating how D2D communication can
be combined with a MEC architecture [41], as depicted in Fig. 1. In our model,
MEC is an intermediate layer between a D2D cluster and the cloud, aiming at
low-latency service delivery from the latter to the former, and it can serve users
by using local short-distance high-rate connections. The intermediate layer can
contain a number of deployed MEC servers aiming to handle the localised requests
issued by cluster users.

We assume that devices within a cluster can communicate in a D2D manner:
directly or by using multi-hop routes. The cluster is formed based on discovery
protocols that run in each device. These allow to sense the environment and
create a list of one-hop neighbours in order to be able to communicate should
any request to forward data or a direct request be sent. We also assume no cellular
infrastructure within the cluster, which means that devices can only communicate
in a device-to-device fashion.

It is envisaged that such scenarios will be very common in 5G ecosystems
where heterogeneous wireless technologies (e.g. NB-LTE, WiFi, ZigBee, Blue-
tooth) will facilitate D2D communication [3]. For example, a device that seeks
some data, can request this from other devices in its cluster, and if the Request
cannot be served the MEC servers must be contacted to assist with the discovery
of this data.

The idea here is that a MEC server is dedicated to provide predefined service
applications to cluster users without the need to communicate with the cloud
so that it accelerates responses while “pushing” the cloud away of the user. We
assume that each D2D cluster has a cluster-head [42], which is a device that
communicates with the MEC servers. The main functionalities of a cluster-head
are (i) to forward the Request of a device to the MEC servers, and (ii) upon
its response, to transmit the Reply back to the requestor. In this work, the
cluster-head can be any device of the cluster. The MEC server is expected to
talk to both the cloud servers and the cluster-head to handle functionalities such
as device identifier allocation, call establishment, UE capability tracking, service
support, and mobility tracking. Note that the election of the cluster-head is not
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investigated in this paper and also this paper is not concerned about deciding
the nature of the cluster-head.

3.2. Adversarial model

As any open wireless environment, akin to one described in this paper, can
be a target of adversaries. More specifically, in this paper, we assume the exis-
tence of a malicious device, called the Attacker, that can launch a Man-In-the-
Middle (MITM) attack by hijacking the link between the cluster-head and MEC
servers. Our analysis adopts the Dolev-Yao model [43]. According to this, the
D2D network, along with its established connection with the MEC servers, is
represented as a set of abstract entities that exchange messages. Yet, the adver-
sary is capable of overhearing, intercepting, and synthesising any message and
she is only limited by the constraints of the deployed cryptographic methods. We
enrich this adversarial model by considering “compromised MEC servers”. This is
to say that the adversary per se could be inside a legitimate MEC server interact-
ing with the cluster-head by using valid credentials and having privileged access
to MEC servers. In this way, the adversary can inject a fake Reply, crafted with
malware, and send it back to the data requestor aiming at infecting her device.

3.3. Malware detection

In this adversarial environment, we envisage the use of anti-malware controls
running in each device. These can be responsible for scanning network traffic for
patterns to detect known malicious attempts. Each device may even respond to
newly detected attack methods (anomaly-based detection). Upon detection, de-
vices can block messages that are likely to consist of insecure content preventing,
in this way, the spread of malware to other devices within their cluster. This as-
sumption can be seen as an advanced application of the next-generation firewalls
to mobile devices. Although in this paper we assume that any detected malice is
blocked by the device that has successfully undertaken the inspection, our work
can be extended to support collaborative (e.g. reputation-based) filtering towards
blocking messages that end up having a bad reputation. Such an approach can
take advantage of learning techniques and its investigation will be part of our
future work.

3.4. Formulation

Let us assume a cluster of N devices. We denote by C its cluster-head, and by
Rqs the requestor of some data. Henceforth we will refer to this data as D. If the
latter can not be found within the cluster itself, Rqs must seek D hosted by the
MEC servers of its cluster. Thus, C receives a Request from Rqs, and it then
queries the MEC server.
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Figure 1: Investigated system model, where a device requests data, that the cluster devices do
not possess, from the MEC server. The adversary has successfully launched a MITM attack
controlling the communication between cluster-head and MEC server.

When C receives back a Reply from the MEC server and Rqs is not within
its transmission range, a route r must be established to deliver D from C to
Rqs. Therefore, there is a need for the devices to relay D towards Rqs, but before
that, C must decide upon r. We assume R routes available between C and Rqs,
we denote by rj ∈ [R], the jth route, and the set of devices that constitute rj
are expressed by Sj . Note that we use the notation [Ξ] to represent the set of Ξ
elements.

Although the route selection can be entirely taken based on quality-of-service
parameters optimising network delay and jitter, the presence of an Attacker, let
it be A, introduces uncertainty with regards to the malice of the data conveyed
toward Rqs. For instance, if A controls the link C ⇐⇒ MEC, then D can be
anything including malware. If this is the case, Rqs, which trusts C, is very likely
to be infected by this malware. In this paper, the infection risk depends on the
likelihood the malware to be collaboratively detected prior to the data being used
by Rqs. This detection relies on devices that forward packets to Rqs, as these are
also inspecting the incoming and outgoing network traffic.

Let us consider Λ different mobile operating systems, and Mλ different mal-
ware available to the Attacker to infect devices that run a mobile operating system
λ ∈ [Λ]. Each device may run one or more anti-malware controls and for each λ
we assume AMλ anti-malware controls, which can mitigate malware that targets
devices running λ.

Let us also assume S devices and a device si ∈ [S], which runs λ, might
have available a combination of anti-malware controls given by the set [AM i

λ] ⊆
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[AMλ]. We use the characteristic function2 1[AM i
λ] : [AMλ] → {0, 1} defined as

follows:

1[AMλ](az) :=

{
1, if az ∈ [AMλ],

0, if az /∈ [AMλ].
(1)

to express whether a control az is installed in si or not.
We express by d(ml, az) ∈ [0, 1) the effectiveness of anti-malware control az

in mitigating ml ∈ [Mλ]. As a device can run one or more anti-malware controls,
and each control az has 1 − d(ml, az) probability of failing to detect ml, the
probability of si failing to detect ml equals

p(si,ml) :=
∏

az∈[AMλ]:1[AMλ]
(az)=1

[1− d(ml, az)] . (2)

Note that each control detects different signs of malware and no interdependen-
cies, in terms of detection capabilities, are assumed in this paper. To put it
differently, we have assumed that an anti-malware control is the minimal piece
of software that detects certain malicious signs.

We define as
p(si) := [p(si,ml)]ml∈[Mλ] ∈ [0, 1]Mλ . (3)

the vector of failing detection probabilities, which captures the effectiveness of si
on detecting malware of the set [Mλ]. One challenge here is to be able to derive
these probabilities in practice. This, for instance, can be done by undertaking
thorough penetration tests (i.e. ethical hacking) to assess the efficacy of each
anti-malware control. These tests can be performed offline for individual software
components and then their combinations can be deployed on the devices. As a
result of this we can derive the probability of ml to infect Rqs, when C uses the
jth route for data delivery, as follows:

p(rj ,ml) :=
∏
si∈Sj

p(si,ml). (4)

Thus, we define as p(rj) := [p(rj ,ml)]ml∈[M ] the vector of probabilities rj to be
infected by the different malware. For more convenience, Table 1 summarizes the
notation used in this paper.

2this is a function defined on a set X that indicates membership of an element in a subset
X ′ of X, having the value 1 for all elements of X ′ and the value 0 for all elements of X not in
X ′.
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Table 1: List of Symbols

Symbol Description Symbol Description

[N ] Set of N devices C Cluster-head

Rqs Data requestor D Requested data

[R] Set of routes from C to Rqs rj j-th route

Sj Set of devices on rj A Attacker

[Λ] Set of mobile operating systems λ Operating system

[Mλ] Set of malware that can infect λ [AMλ]
Set of anti-malware controls for
λ

[S] Set of devices si i-th device

ml l-th malware d(ml, az)
Effectiveness az in mitigating
ml

p(si,ml)
Probability of si failing to de-
tect ml

p(si)
Vector of “failing-to-detect”
probabilities of si for different
malware

p(rj ,ml)
Probability of Rqs to be infected
with malware ml when D is sent
over rj

p(rj)
Vector of infection probabilities
for rj and all malware types

[M ] Set of malware ρ Defender’s mixed strategy

µ Attacker’s mixed strategy S(rj ,ml)
Expected security damage on
route rj when relaying ml

c(si) Malware detection cost on si C(rj) Malware detection cost on rj
H(ml) Security loss inflicted by ml L path length

Cj
Set of computational malware
inspection costs c(si) in rj

Tj
Set of malware inspection capa-
bilities p(si) in rj

3.5. Game model

Now that we have defined our system model by describing its components and
their relationship, in the rest of this section, we use game theory to investigate
the optimal strategic routing decisions of C, the Defender, and the Attacker who
aims to infect one of the cluster devices with mobile malware. The Attacker’s
objective is to succeed an attack against Rqs and the Defender must select a
route to deliver the Reply to Rqs.

We define the Malware Detection Game (MDG) between Defender and At-
tacker, as an one-shot, bimatrix game of complete information played for each
requestor that seek some data. The set of pure strategies of the Defender consists
of all possible routes, rj ∈ [R], from C to Rqs. On the other hand, the pure strate-
gies of the Attacker are the different malware ml ∈ [M ] that can be injected into
the D2D network in the form of a Reply. Thus, in MDG a pure strategy profile
is a pair of Defender and Attacker actions, (rj ,ml) ∈ [R] × [M ] giving a pure
strategy space of size R×M . For the rest of the paper, the convention is adopted
where the Defender is the row player and the Attacker is the column player.

Each player’s preferences are specified by her payoff function, and we define
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as Ud : (rj ,ml)→ R− and Ua : (rj ,ml)→ R+ the payoff functions of the Defender
and Attacker, respectively, when the pure strategy profile (rj ,ml) is played. Ac-
cording to [44], we define a preference relation %, when ml is chosen by the
Attacker, by the condition rx % ry, if and only if Ud(rx,ml) ≥ Ud(ry,ml). In gen-
eral, given the set [R] of all available routes from C to Rqs, a rational Defender can
choose a route (i.e. pure strategy) r∗ that is feasible, that is r∗ ∈ [R], and optimal
in the sense that r∗ % r, ∀ r ∈ [R], r 6= r∗; alternatively she solves the problem
maxr∈[R] Ud(r, ml), for a message ml ∈ [M ]. Likewise, we can define the prefer-
ence relation for the Attacker, where mx % my ⇐⇒ Ua(rj ,mx) ≥ Ua(rj ,my), for
a route rj ∈ [R].

MDG can be seen as a game per session, where the start of each session is
signified by the transmission of a new Reply that the cluster-head will send to
Rqs; it is also realistic to assume that over a time period, there will be multi-
ple sessions. To derive optimal strategies for the Defender during the repetitions
of MDGs, we deploy the notion of mixed strategies. Since players act indepen-
dently, we can enlarge their strategy spaces, so as to allow them to base their
decisions on the outcome of random events that create uncertainty to the op-
ponent about individual strategic choices maximising their payoffs. Hence, both
Defender and Attacker deploy randomised (i.e. mixed) strategies. The mixed
strategy ρ of the Defender is a probability distribution over the different routes
(i.e. pure strategies) from C to Rqs, where ρ(rj) is the probability of delivering
a Reply via rj under mixed strategy ρ. We refer to a mixed strategy of the
Defender as a Randomised Delivery Plan (RDP). For the finite nonempty set
[R], let Π[R] represent the set of all probability distributions over it, i.e.

Π[R] := {ρ ∈ R+R|
∑
rj∈[R]

ρ(rj) = 1}. (5)

Therefore a member of Π[R] is a mixed strategy of the Defender.
Likewise, the Attacker’s mixed strategy is a probability distribution over the

different available malware. This is denoted by µ, where µ(ml) is the probability
of choosing ml under mixed strategy µ. We refer to a mixed strategy of the
Attacker as the Malware Plan (MP). Similarly with (5), we express by Π[M ] the
set of all probability distributions over the set of all Attacker’s pure strategies
given by [M ]. Thus, a member of Π[M ] is as a mixed strategy of the Attacker. From
the above, the set of mixed strategy profiles of MDG is the Cartesian product of
the individual mixed strategy sets, Π[R] ×Π[M ].

Definition 1. The support of RDP ρ is the set of routes {rj |ρ(rj) > 0}, and it
is denoted by supp(ρ).

Definition 2. The support of MP µ is the set of malware {ml|µ(ml) > 0}, and
it is denoted by supp(µ).
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The above definitions state that the subset of routes (resp. malware) that
are assigned positive probability by the mixed strategy ρ (resp. µ) is called the
support of ρ (resp. µ). Note that a pure strategy is a special case of a mixed
strategy, in which the support is a single action.

Now that we have defined the mixed strategies of the players, we can define
MDG as the finite strategic game Γ = 〈(Defender, Attacker), Π[R]×Π[M ], (Ud, Ua)〉.
For a given mixed strategy profile (ρ,µ) ∈ Π[R]×Π[M ], we denote by Ud(ρ,µ), and
Ua(ρ,µ) the expected payoff values of the Defender and Attacker, where the ex-
pectation is due to the independent randomisations according to mixed strategies
ρ, and µ.

Formally

Ud(ρ,µ) :=
∑
rj∈[R]

∑
ml∈[M ]

Ud(rj ,ml)ρ(rj)µ(ml). (6)

and similarly

Ua(ρ,µ) :=
∑
rj∈[R]

∑
ml∈[M ]

Ua(rj ,ml)ρ(rj)µ(ml). (7)

By using the preference relation we can say that, for an Attacker’s mixed
strategy µ, the Defender prefers to follow the RDP ρ as opposed to ρ′ (i.e. ρ %
ρ′), if and only if Ud(ρ,µ) ≥ Ud(ρ′,µ).

Definition 3. The Defender’s (resp. Attacker’s) best response to the mixed strat-
egy µ (resp. ρ) of the Attacker (resp. Defender) is a RDP ρBR ∈ Π[R] (resp. µBR ∈
Π[M ]) such that Ud(ρ

BR,µ) ≥ Ud(ρ,µ), ∀ ρ ∈ Π[R] (resp. Ua(ρ,µ
BR) ≥ Ud(ρ,µ), ∀ µ ∈

Π[M ]).

It is noteworthy to mention that the game theoretic solutions that we will
propose, in the next section, involve randomisation. For instance, in a mixed equi-
librium, each player’s randomisation leaves the other indifferent across her ran-
domisation support. These choices can be deliberately randomised or be taken by
software agents that run in mobile devices (i.e. cluster-heads or adversaries). How-
ever these are not the only equilibria interpretations. For instance, the probabil-
ities over the pure actions (i.e. route or malware pure selections) can represent
(i) time averages of an “adaptive” player, (ii) a vector of fractions of a “popula-
tion”, where each player type adopts pure strategies and, (iii) a “belief” vector
that each player has about the other regarding their behaviour.

4. Game solutions

Now that we have defined MDG along with its components, in this section we
concentrate in deriving optimal strategies for the Defender. First, we investigate
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the problem of determining best RDPs and MPs (i.e. mixed strategies), for the
Defender and the Attacker respectively, when both parties are rational decision-
makers and they play simultaneously. Note that a game solution is a prediction
of how rational players may take decisions.

As we have not explicitly defined the strategic type of Attacker, we consider
different types of solutions based on various Attacker behaviours. This analysis
will allow us to draw robust conclusions regarding the overall optimal Defender
strategy, which will minimise expected damages regardless of the Attacker type.

4.1. Nash mixed strategies

The most commonly used solution concept in game theory is that of Nash
Equilibrium (NE). This concept captures a steady state of the play of the MDG
in which Defender and Attacker hold the correct expectation about the other
players’ behaviour and they act rationally. In other words, an NE dictates optimal
responses to each other’s actions, keeping the others’ strategies fixed, i.e. strategy
profiles that are resistant against unilateral deviations of players.

Definition 4. In any Malware Detection Game (MDG), a mixed strategy profile
(ρNE,µNE) of Γ is a mixed NE if and only if

1. ρNE % ρ, ∀ρ ∈ Π[R], when the Attacker chooses µNE, i.e.

Ud(ρ
NE,µNE) ≥∀ρ∈Π[R]

Ud(ρ,µ
NE); (8)

2. µNE % µ, ∀µ ∈ Π[M ], when the Defender chooses ρNE, i.e.

Ua(ρ
NE,µNE) ≥∀µ∈Π[M ]

Ua(ρ
NE,µ). (9)

Definition 5. The Nash Delivery Plan (NDP), denoted by ρNE, is the probability
distribution over the different routes, as determined by the NE of the MDG.

For instance, a NDP (0.7, 0.3) dictates that 70% of the Replys will be sent
over r1, and 30% over r2. Note that this distribution does not determine which
Reply is sent over which route, as this decision is probabilistic.

4.2. Maximin strategies

We say that the Defender maximinimizes if she chooses an RDP that is best
for her on the assumption that whatever she does, the Attacker will choose an
MP to cause the highest possible damage to her.

Definition 6. A Randomised Delivery Plan ρ† ∈ Π[R] is a maximin strategy of
the Defender, if and only if

min
µ∈Π[M ]

Ud(ρ
†,µ) ≥ min

µ∈Π[M ]

Ud(ρ,µ), ∀ρ ∈ Π[R]. (10)
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Table 2: A toy game example

m m′

r -3,1 -1,0

r′ -4,0 -2,1

A maximinimiser for the Defender is an RDP that maximises the payoff that
the Defender can guarantee. In other words, ρ† guarantees (i.e. “secures”) the
Defender at least her maximin payoff regardless of µ, as ρ† solves the problem
maxρ minµ Ud(ρ,µ). That is why ρ† is also called security strategy.

Definition 7. A Malware Plan µ† ∈ Π[M ] is a maximin strategy of the At-
tacker, if and only if

min
ρ∈Π[R]

Ua(ρ,µ
†) ≥ min

ρ∈Π[R]

Ua(ρ,µ), ∀µ ∈ Π[M ]. (11)

4.3. Stackelberg mixed strategies

A two-player Stackelberg game involves one player (leader) to commit to a
strategy before the other player (follower) moves. In a Stackelberg model the
commitment of the leader is absolute, that is the leader cannot back-track on her
commitment. On the other hand, the follower sees the strategy that the leader
committed to, before she chooses a strategy.

In an Stackelberg MDG, the Attacker conducts surveillance before she attacks
and therefore she is aware of the Defender’s RDP. For completeness, we consider
that this best-response is expressed also in mixed strategies.

In general, Stackelberg and Nash games do not have the same equilibria. For
instance, let us consider the normal-form MDG in Table 2, where the Defender has
only two routes (r, r′) available and the Attacker can choose between two malware
types (m,m′). We see that if this is a Nash game, r is a strictly dominant strategy
for the Defender, as it gives her a higher payoff value than r′. As we have assumed
that this is a complete information game, the Attacker knows that r is preferable
for the Defender and she chooses m, which rewards her with 1 as opposed to
m′, which gives payoff value 0. Therefore the NE of the game (in pure strategies)
is (r,m).

If we now consider this game as Stackelberg, the Defender (leader) can commit
to a strategy before the Attacker (follower) chooses her strategy. If the Defender
commits to r then the Attacker will play m, but if the Defender commits to r′

then the Attacker will choose m′. The second pure strategy profile, i.e. (r′,m′)
gives higher payoff to the Defender (-2 as opposed to (r,m), which gives -3) and
therefore the Defender is better-off in the Stackelberg game compared to the Nash
game, where her payoff equals -3 < -2.
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Definition 8. A Reply Delivery Plan (RDP) is optimal if it maximises the De-
fender’s payoff given that the Attacker will always play a best-response strategy
with tie-breaking in favour of the Defender.

Definition 9. A Malware Plan is a best response if it maximises the Attacker’s
payoff, taking the Defender’s Reply Delivery Plan as given.

A commonly used notion of a solution in Stackelberg games is the Strong
Stackelberg Equilibrium (SSE), defined in MDG as follows.

Definition 10. At the Strong Stackelberg Equilibrium of the MDG:

1. for any ρ ∈ ∆[R], the Attacker plays a best-response µBR(ρ) ∈ ∆[M ] that
is,

Ua(ρ,µ
BR(ρ))≥Ua(ρ,µ(ρ)), ∀µ(ρ)6=µBR(ρ); (12)

2. for any ρ ∈ ∆[R], the Attacker breaks ties in favour of the Defender, that
is, when there are multiple best responses to ρ, the Attacker plays the best
response µSSE(ρ) ∈ ∆[M ] that maximises the Defender’s payoff:

Ud(ρ,µ
SSE(ρ))≥Ud(ρ,µBR(ρ)),

∀µBR best response to ρ;
(13)

3. the Defender plays a best-response ρSSE ∈ ∆[R], which maximises her payoff
given that the Attacker’s strategies are given by the first two conditions
(i.e. the Attacker always plays best response with tie-breaking in favour of
the Defender [38],[45]):

Ud(ρ
SSE,µSSE(ρSSE))≥Ud(ρ, µSSE(ρ)), ∀ ρ6=ρSSE. (14)

5. Optimality analysis

For the purpose of analysis, we consider complete information Nash MDGs,
according to which both players know the game matrix, which contains the util-
ities of both players for each pure strategy profile. The utility function of the
Defender is determined by the probability of failing to detect a route and the
overall performance cost, which is imposed on the devices of the j-th route when
undertaking malware detection. We denote by c(si) the performance cost imposed
on each si ∈ Sj and therefore the overall performance cost over a route rj equals∑

si∈Sj c(si).

We consider two different MDGs; (i) a zero sum MDG, where the Attacker’s
utility is the opposite of the Defender’s utility and (ii) a non-zero sum MDG,
where the Attacker’s utility is a strictly positive scaling of the Defender’s utility.
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The rationale behind the zero sum game is that when there are clear winners
(e.g. the Attacker) and losers (e.g. the Defender), and the Defender is uncertain
about the Attacker type, she considers the worst case scenario, which can be
formulated by a zero sum game where the Attacker can cause her maximum
damage. While in most security situations the interests of the players are neither
in strong conflict nor in complete identity, the zero sum game provides important
insights into the notion of “optimal play”, which is closely related to the minimax
theorem [46].

In the zero sum MDG, Γ0 = 〈{d, a}, [R] × [M ], {Ud,−Ud}〉 (for clarity d has
been used for the Defender and a for the Attacker), the Attacker’s gain is equal to
the Defender’s security loss, and vice versa. We define the utility of the Defender
in Γ0 as

UΓ0
d (rj ,ml) := −wH p(rj ,ml)H(ml)− wC

∑
si∈Sj

c(si). (15)

The first term of (15) is the expected security loss of the Defender inflicted by the
Attacker when attempting to infect Rqs with ml, while the second term expresses
the aggregated message inspection cost imposed on all devices of rj , irrespective
of the attacking strategy. Note that wH , wC ∈ [0, 1] are importance weights, which
can facilitate the Defender with setting her preferences in terms of security loss,
and computational detection cost, accordingly.

By setting S(rj ,ml) = wH p(rj ,ml)H(ml), and C(rj) = wC
∑

si∈Sj c(si), we
have that

UΓ0
d (rj ,ml) := −S(rj ,ml)− C(rj). (16)

For a mixed profile (ρ,µ), the utility of the Defender equals

UΓ0

d (ρ,µ)
(6)
=

∑
rj∈[R]

∑
ml∈[M ]

UΓ0

d (rj ,ml)ρ(rj)µ(ml)

(16)
=

∑
rj∈[R]

∑
ml∈[M ]

[−S(rj ,ml)− C(rj)]ρ(rj)µ(ml)

= −
∑

rj∈[R]

∑
ml∈[M ]

S(rj ,ml)ρ(rj)µ(ml)

−
∑

rj∈[R]

C(rj)ρ(rj).

(17)

As Γ0 is a zero sum game, the Attacker’s utility is given by UΓ0
a (ρ,µ) =

−UΓ0
d (ρ,µ). Since the Defender’s equilibrium strategies maximise her utility,

given that the Attacker maximises her own utility, we will refer to them as optimal
strategies.

As Γ0 is a two-person zero sum game with finite number of actions for both
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players, according to Nash [47], it admits at least a NE in mixed strategies, and
saddle-points correspond to Nash equilibria as discussed in [15] (p. 42). The fol-
lowing result from [48], establishes the existence of a saddle (equilibrium) solution
in the games we examine and summarizes their properties.

Definition 11 (Saddle point of the MDG). The Γ0 Malware Detection Game
(MDG) admits a saddle point in mixed strategies, (ρNE

Γ0
,µNE

Γ0
), with the property

that

• ρNE
Γ0

= arg maxρ∈∆[R]
minµ∈∆[M ]

UΓ0
d (ρ,µ), ∀µ, and

• µNE
Γ0

= arg maxµ∈∆[M ]
minρ∈∆[R]

UΓ0
a (ρ,µ), ∀ρ.

Then, due to the zero sum nature of the game, the minimax theorem [46] holds,
i.e. maxρ∈∆[R]

minµ∈∆[M ]
UΓ0
d (ρ,µ) = minµ∈∆[M ]

maxρ∈∆[R]
UΓ0
d (ρ,µ).

The pair of saddle point strategies (ρNE
Γ0
,µNE

Γ0
) are at the same time security

strategies for the players, i.e. they ensure a minimum performance regardless of
the actions of the other. Furthermore, if the game admits multiple saddle points
(and strategies), they have the ordered interchangeability property, i.e. the player
achieves the same performance level independent from the other player’s choice
of saddle point strategy.

The minimax theorem [46] states that for zero sum games, NE and minimax
solutions coincide. Therefore, ρNE

Γ0
= arg minρ∈∆[R]

maxµ∈∆[M ]
UΓ0
a (ρ,µ). This

means that regardless of the strategy the Attacker chooses, the Nash Delivery
Plan (NDP) is the Defender’s security strategy that guarantees a minimum per-
formance.

We can convert Γ0 into a Linear Programming (LP) problem and make use of
some of the powerful algorithms available for LP to derive the equilibrium. For a
given mixed strategy ρ of the Defender, we assume that the Attacker can cause
maximum damage to Rqs by injecting a message m̂ into the cluster network.

Formally, the Defender seeks to solve the following LP:

max
ρ∈∆[R]

min
µ∈∆[M]

UΓ0

d (ρ, m̂ )

subject to



UΓ0

d (ρ,m1)−minµ∈∆[M]
UΓ0

d (ρ, m̂)e ≥ 0
...

UΓ0

d (ρ,mM )−minµ∈∆[M]
UΓ0

d (ρ, m̂)e ≥ 0

ρe = 1

ρ ≥ 0.

(18)

In this problem, e is a vector of ones of size M .

Lemma 1. A mixed strategy profile (ρNE,µNE) ∈ Π[R] ×Π[M ] in Γ0, is a mixed
strategy NE if and only if
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1. every route rj ∈ supp(ρNE) selection is a best response to µNE and,

2. every malware ml ∈ supp(µNE) selection is a best response to ρNE.

Proof. First, notice that Ud, as defined in (15), is a linear function in ρ(rj) that
is, for any two RDPs ρ1 and ρ2 and any number θ ∈ [0, 1] we have Ud(θ ρ1 + (1−
θ)µ) = θ Ud(ρ1) + (1 − θ)Ud(ρ2). Then, for the sake of contradiction, assume
there exists a route r′j ∈ supp(ρNE) selection that is not a best response to

µNE. Due to the linearity of Ud in ρNE(rj), the Defender can increase her payoff
by transferring probability from ρ(r′j) to a route selection that is a best response

to µNE, creating a new mixed strategy ρ∗ % ρNE. However, this contradicts the
assumption that ρNE is the strategy of the Defender at the NE, as the Defender
prefers to deviate from ρNE to gain a higher payoff, by playing ρ∗. The second
part of the lemma can be proven in the same way.

Let us now assume a non-zero sum MDG, denoted by Γ, with the same
strategy spaces with Γ0, in which the Defender’s utility is the same as in Γ0,
i.e. UΓ

d (ρ,µ) = UΓ0
d (ρ,µ) = −S(rj ,ml) − C(rj). On the other hand, the At-

tacker’s utility is (strictly positive) scaling of the security loss S(rj ,ml) of the
Defender upon a successful attack. This is to say that the performance cost of
the Defender is only important to her as the Attacker is only after compromising
Rqs. Therefore, given a pure strategy profile (rj ,ml), the utility of the Attacker,
in Γ, is defined as:

UΓ
a (rj ,ml) := ΞS(rj ,ml), for Ξ > 0. (19)

For a mixed profile (ρ,µ) the utility of the Attacker is given by

UΓ
a (ρ,µ)

(7)
=
∑
rj∈[R]

∑
ml∈[M ]

UΓ
a (rj ,ml)ρ(rj)µ(ml)

(19)
=

∑
rj∈[R]

∑
ml∈[M ]

ΞS(rj ,ml)ρ(rj)µ(ml).
(20)

Hence, due to UΓ
d (ρ,µ) = UΓ0

d (ρ,µ), from (17) and (20) we have that

UΓ
d (ρ,µ) = − 1

Ξ
UΓ
a (ρ,µ)−

∑
rj∈[R]

C(rj)ρ(rj)

= − 1

Ξ
UΓ
a (ρ,µ)− k(ρ),

(21)

where 1
Ξ > 0, and k(ρ) is an expression that does not depend on µ. That is, the

best response of the Defender to any given malware plan, also yields the utility
for the Defender at the worst case scenario.
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Lemma 2. NE strategies of the Defender in Γ are equivalent of the NE strategies
of the Defender in Γ0. Formally, ΩNE

Γ = ΩNE
Γ0

.

Proof. By definition, a strategy profile (ρNE,µNE) is NE of Γ if and only if:

S(ρNE,µNE) + k(ρNE) ≤ S(ρ,µNE) + k(ρ),∀ρ ∈ ∆[R], (22a)

Ξ · S(ρNE,µNE) ≥ Ξ · S(ρNE,µ),∀µ ∈ ∆[M ]. (22b)

Here is the observation:

Ξ · S(ρNE,µNE) ≥ Ξ · S(ρNE,µ),∀µ ∈ ∆[M ] ⇐⇒
Ξ · [S(ρNE,µNE) + k(ρNE)] ≥

Ξ · [S(ρNE,µ) + k(ρNE)], ∀µ ∈ ∆[M ].

(23)

Since Ξ > 0, the latter condition is satisfied if and only if:

S(ρNE,µNE) + k(ρNE) ≥ S(ρNE,µ) + k(ρNE),∀µ ∈ ∆[M ]. (24)

In short, (ρNE,µNE) is a NE of Γ, if and only if it satisfies:

S(ρNE,µNE)+k(ρNE)≤S(ρ,µNE)+k(ρ),∀ρ∈∆[R], (25a)

S(ρNE,µNE)+k(ρNE)≥S(ρNE,µ)+k(ρNE),∀µ∈∆[M ]. (25b)

But these are exactly the conditions describing a NE of Γ0. Therefore ΩNE
Γ =

ΩNE
Γ0

.

Lemma 3. In Γ, the set of NE and Maximin strategies of the Defender are
equivalent, i.e. ΩNE

Γ = Ωmaximin
Γ .

Proof. (⇒) Since Γ0 is a two person zero-sum game, we know that the set of NE
and Maximin strategies of the Defender are the same, i.e. ΩNE

Γ0
= Ωmaximin

Γ0
. Let

(ρNE,µNE) ∈ ΩNE
Γ then based on Lemma 2 we have that (ρNE,µNE) ∈ ΩNE

Γ0
. Since

Γ0 is zero-sum, ρNE ∈ Ωmaximin
Γ0

. But the strategy spaces and the utility of the De-
fender are the same in both Γ and Γ0. Hence the conditions for a mixed strategy to
be a Defender’s Maximin is the same in both games. Therefore, ρNE ∈ Ωmaximin

Γ ,
i.e. ΩNE

Γ ⊆ Ωmaximin
Γ .

(⇐) The argument goes in the other direction as well: consider ρNE ∈ Ωmaximin
Γ . Since

the utility of the Defender and the strategy spaces are the same across the two
games, for the same strategy ρNE, we have that ρNE ∈ Ωmaximin

Γ0
. Since Γ0 is two-

player zero-sum, there exists µNE such that (ρNE,µNE) ∈ ΩNE
Γ0

. From Lemma 2,

this means (ρNE,µNE)Γ ∈ ΩNE. Hence, Maximin strategies of the Defender are
also part of her NE strategies in Γ, i.e. Ωmaximin

Γ ⊆ ΩNE
Γ . Putting the two together

ΩNE
Γ = Ωmaximin

Γ .
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This lemma establishes that the Defender can randomise according to her NE
and, in expectation, be guaranteed at least the expected utility prescribed by
the NE, irrespective of the mixed strategy of the Attacker. To put it differently,
the Defender can play her pessimistic maximin strategy, but she does not lose
anything in expectation by not playing a NE strategy. It is worth stressing that
this property only holds for the NE strategy of the Defender and not of the
Attacker.

Lemma 4. In Γ, the set of Maximin and SSE strategies of the Defender are the
same, i.e. Ωmaximin

Γ = ΩSSE
Γ .

Proof. (⇒) Let ρNE ∈ ΩSSE
Γ be a SSE strategy of the Defender. Then by defini-

tion, ρNE is (i) an optimal strategy of the Defender given that (ii) the Attacker
is best-responding to it but by (iii) breaking ties in favour of the Defender. That
is:

(i) ρNE ∈ arg maxρ∈∆[R]
Ud(ρ,µ

BR(ρ)) where;

(ii) for any ρ ∈ ∆[R], µ
BR(ρ) ∈ arg maxµ∈∆[M ]

Ua(ρ,µ) and;

(iii) for any ρ ∈ ∆[R]:

µBR(ρ) ∈ arg max
µ∈arg maxµ∈∆[M]

Ua(ρ,µ)
Ud(ρ,µ). (26)

Let us examine condition (ii): for any ρ ∈ ∆[R]:

µBR(ρ) ∈ arg max
µ∈∆[M]

Ξ · S(ρ,µ) ⇐⇒

µBR(ρ) ∈ arg max
µ∈∆[M]

Ξ · [S(ρ,µ) + k(ρ)]

µBR(ρ) ∈ arg max
µ∈∆[M]

S(ρ,µ) + k(ρ).

(27)

In short, condition (ii) is equivalent to:

(iv) For any ρ ∈ ∆[R],µ
BR(ρ) ∈ arg min

µ∈∆[M ]

Ud(ρ,µ).

This makes condition (iii) irrelevant. But conditions (i) and (iv) exactly describe
a Maximin strategy of the Defender. Therefore we have proved that ΩSSE

Γ ⊆
Ωmaximin

Γ . (⇐) The argument can be established identically in reverse direction,
starting from a Maximin strategy of the Defender. So given conditions (i) and
(iv) we must prove that conditions (ii) and (iii) are true. Let ρNE ∈ Ωmaximin

Γ be
a Maximin strategy of the Defender. Then by definition, ρNE is (i) an optimal
strategy of the Defender given that (iv) the Attacker is minimising Defender’s
utility. We see that condition (ii) is true if and only if condition (iv) is true. Since
the Maximin strategy ρNE makes condition (iv) true, it will also make condition
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(ii). To prove that ρNE is an SSE, we also need to prove condition (iii). Let us
assume that the condition is not true. This means that there is a best-response
of the Attacker that does not break ties in favour of the Defender. Formally,

µBR(ρ)/∈arg max
µ∈argmaxµUa(ρ,µ)

Ud(ρ,µ)⇐⇒

µBR(ρ)/∈arg max
µ∈argmaxµUa(ρ,µ)

{
−S(ρ,µ)−k(ρ)

}
⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

{
S(ρ,µ)+k(ρ)

}
⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

S(ρ,µ)⇐⇒

µBR(ρ)/∈arg min
µ∈argmaxµUa(ρ,µ)

Ua(ρ,µ),

(28)

which is leads to a contradiction. Therefore condition (3) holds, and putting
together all three conditions (1), (2), and (3), we have that ρNE, which is a
Maximin strategy of the Defender it is also an SSE strategy, i.e. Ωmaximin

Γ ⊆
ΩSSE

Γ . Putting the two proofs together we have that Ωmaximin
Γ = ΩSSE

Γ .

Theorem 1. In Γ, the set of NE, Maximin and SSE strategies of the Defender
are the same, i.e. ΩNE

Γ = Ωmaximin
Γ = ΩSSE

Γ . Besides, all NE are interchangeable,
in Γ, and all yield the same utility for the defender.

Proof. Trivially, from Lemmas 3 and 4 we have that ΩNE
Γ = Ωmaximin

Γ = ΩSSE
Γ . Since

Γ0 is a two person zero-sum game, we know that all NE are interchangeable
[48]. From Lemma 2 the NE of Γ0 are the NE of Γ and vice-versa. We also see
that the utility of the Defender is the same across Γ and Γ0. Therefore the utility
of the Defender in all NE of our original game is the same, which also implies
that all NE of our original game are interchangeable.

The above lemma establishes that the Defender, regardless of whether the At-
tacker conducts surveillance, she plays optimally when she randomises according
to her NE strategy.

Theorem 2. Regardless of the type of malware detection game played, i.e.

1. a zero sum or a non-zero sum malware detection game,

2. a Nash or a Stackelberg malware detection game,

the Defender plays optimally by choosing any strategy ρ ∈ ΩNE
Γ0

.

Proof. By combining 2 and 1, we have that ΩNE
Γ0

= ΩNE
Γ = Ωmaximin

Γ = ΩSSE
Γ ,

which proves the theorem.

23



The above theorem demonstrates that it is computationally efficient for the
Defender to derive her optimal strategy by solving the LP represented by (18). It
is worth noting that a similar result but for different problem has been published
in [37].

6. iRouting

In this section, we present the iRouting protocol, which stands for intelligent
Routing and whose routing decisions are made according to the Nash Delivery
Plan (NDP). iRouting has been designed based on the mathematical findings
of the MDG analysis, presented in previous sections, and its main goal is to
maximise the utility of the Defender in the presence of a “rational” Attacker.

Within the realm of Mobile Edge Computing (MEC), devices of the cluster
request services from the cluster-head (denoted by C) imposing the need for estab-
lishing an end-to-end path between the requestor (i.e. destination device denoted
by Rqs) and C. Each time data must be delivered to Rqs, C has to compute the
NDP by solving an MDG for this destination. To do this, following the route
discovery, C uses its latest information about the malware detection capabilities
of all possible routes to Rqs, along with their inspection costs (i.e. malware detec-
tion costs to perform, for example, intrusion classification). Data is then relayed
and collaboratively inspected by the devices on its way to Rqs. Overall, the ob-
jective of C (i.e. the Defender) is to select the route that can correctly detect
and filter out malicious data before they infect Rqs by making sure that it is not
crafted with malware. We assume that each device must use its data inspection
capabilities at the maximum possible degree..

iRouting has characteristics of reactive route selection protocols, meaning that
it takes action and starts computing routing paths that have not been previously
computed when a request for data delivery to Rqs is issued. iRouting requires to
obtain information about the malware inspection capabilities and the associated
computational cost of devices, in routes from C to Rqs.

iRouting consists of three main phases, which we describe in more detail
in the remainder of this section. In the first phase of the protocol (described in
Algorithm 1), C broadcasts a Route REQuest (RREQRqs) to discover routes towards
Rqs. Each device that receives the RREQRqs), acts similarly by broadcasting it
towards Rqs. After C sends a RREQRqs, it has to await for some timeout Treq,
which is set equal to the Net Traversal Time (NetTT), as in AODV [7].

The second phase of the protocol starts when the receiving device is Rqs. Then,
this device does not forward the request any further. Instead, it prepares a Route
REPly (RREPRqs), and sends it back towards C by using the reverse route, which is
built during the delivery of RREQRqs, as described by Algorithm 2. Each RREPRqs
carries information about: (i) the set Sj of devices that comprise a route; (ii)
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Algorithm 1 Seeking routes to destination Rqs.

1: procedure iRouting Request(s, Rqs,Sj)
2: s seeks routes to Rqs by broadcasting RREQRqs;
3: if a device si receives RREQRqs then
4: Sj ∪ {si};
5: if si 6= Rqs then
6: si executes iRouting Request(si, Rqs,Sj);
7: else
8: L← |Sj |, n← 0, Tj ← ∅, Cj ← ∅;
9: iRouting Response(n,L, Tj , Cj ,Sj , Rqs);

10: break;
11: end if
12: end if
13: end procedure

Algorithm 2 Responding to a cluster-head with a route to Rqs.

1: procedure iRouting Response(n,L, Tj , Cj ,Sj , s)
2: s sends RREPRqs to the (L− n)-th device of Sj , let it be si;
3: if si 6= C then
4: Tj ∪ p(si), Cj ∪ c(si), n← n+ 1;
5: iRouting Response(n,L, Tj , Cj ,Sj , si);
6: else
7: Execute iRouting(Rqs, D,Sj, Tj, Cj);
8: break;
9: end if

10: end procedure

the set Tj of vectors of “failing-to-detect” probabilities, for different malware,
of devices in rj ; and (iii) the set Cj of computational malware inspection costs
c(si) of devices in rj . These values are updated while the RREPRqs is traveling
back to C. When each device (e.g. si) that is involved in the route response
phase, receives the RREPRqs, it updates Tj and Cj . Within the time period Treq, C
aggregates RREPRqs messages and updates its routing table with information that
can be used to derive the optimal routing strategy, as dictated by Theorem 2.

In the third phase of the protocol, described in Algorithm 3, C uses its routing
table to solve the MDG by computing the Nash Delivery Plan, denoted by ρNE,
which has a lifetime T . Then, C probabilistically selects a route according to ρNE

to deliver the requested data to Rqs. The chosen route is denoted by r∗. Note
that for the same Rqs and before T expires, C uses the same ρNE to derive r∗,
upon a new Request.
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Algorithm 3 Delivering data to Rqs.

1: procedure iRouting(Rqs, D,Sj, Tj, Cj)
2: C derives the Nash Delivery Plan, ρNE using Sj , Tj , Cj ;
3: C chooses r∗ probabilistically as dictated by ρNE;
4: C delivers D to Rqs over r∗;
5: Each device si ∈ r∗ performs data inspection;
6: if D found to carry malware then
7: si drops D;
8: si notifies C by sending a notification message along the reverse path;
9: C blacklists the device that sent, through the cloud, D consisting of

malware;
10: else
11: si forwards D to Rqs;
12: end if
13: end procedure

Also, the third phase focuses on detecting malware injected along with the
requested data (denoted by D) to prevent the infection of Rqs. While D is delivered
to Rqs over r∗, the relay devices, on r∗, perform data inspection auditing D for
malware. Upon successful detection, the device that detects the malware, first
drops D, and then notifies C that D was crafted with malware. The notification
message is sent along the reverse path. When receiving this, C blacklists the
device that has originally sent D (this device is assumed that has hijacked the
communication link between MEC server and the cluster-head). This can be seen
as the first step towards mitigating the investigated attack model and anything
beyond that is out of the scope of this paper.

While each data D is collaboratively inspected by the devices on its way to Rqs,
the derivation of the optimal routing strategy, i.e. the Nash Delivery Plan (NDP),
is computed only by C through solving a Malware Detection Game (MDG) for
this specific destination Rqs. Therefore, even if the other devices are aware of the
existence of some infected data, it is only C that isolates the Attacker (i.e. data
source) towards mitigating future malware infection risks.

The communications complexity of the iRouting protocol measured in terms
of number of messages exchanged in performing route discovery is O(2N), where
N is the number of devices in the D2D network. As a reactive routing protocol,
iRouting has higher storage complexity than conventional routing protocols, but
it supports multiple-path routing and QoS routing making malware detection
optimal, as shown in section 5. Finally, iRouting has a time complexity equal to
O(2D), where D is the diameter of the D2D network.
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Table 3: Simulation parameter values

Parameter Value

Number of nodes 20

Mobility model Linear Mobility

Mobility Speed 10 m/s

Mobility Update Interval 0.1 s

Packet size 512 bytes

Packet generation rate 2 packets/s

Simulation time 600 s

7. Simulations

7.1. Network setup

We have conducted a series of simulations to evaluate the performance of the
optimal strategies in D2D networks. Devices have been randomly deployed inside
a rectangular area of 1000m x 1000m. For each device, the transmission power
is fixed, and the maximum transmission range is 200m, while two devices can
directly communicate with each other only if they are in each others transmis-
sion range. We have performed the simulations using the OMNeT++ network
simulator and INET framework. We have simulated the IEEE 802.11 MAC layer
protocol and devices send UDP traffic. In the simulations, the requestor of some
data is chosen randomly, and the total number of devices of a cluster is set to be
20. The total simulation time varies (10, 20, 40, 60, 120 seconds) to confirm the
consistency of results. Table 3 summarizes the simulation parameters.

7.2. Security controls and malware

Simulations consider one adversary who is injecting a sequence of consecutive
malicious replies with the aim to infect Rqs. We assume that the Attacker chooses
to inject one of [M ] = {Keylogger, SMS spam, Rootkit iSAM, Spyware, iKee-B,
Premium-Rate calls} malware types (i.e. pure strategies of the Attacker). We
have also assumed the anti-malware controls, SMS Profiler, iDMA, iTL, and
Touchstroke, along with their detection rates, as published in [49]. Each mobile
device is equipped with at least one and up to three anti-malware controls.

7.3. Attackers

We have simulated 3 different Attacker types; namely Uniform, Weighted,
and Nash Attacker:

• Uniform: the Attacker chooses each malware type from the set with equal
probability. For example for the set we have used here, there is a probability
1
6 = 0.1667 the Attacker to choose any of the malware types of [M ];
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• Weighted : the Attacker chooses a malware type with probability derived
by the following algorithm:

1. find the average utility value of the Attacker for each column of the
game matrix;

2. add the average utility values of the Attacker for all columns to get
the combined sum;

3. for each malware type, derive the probability of a malware type to be
chosen by dividing its average utility value, found in step 1, by the
sum derived in step 2.

• Nash: the Attacker plays according to her Nash strategy µNE .

Per Reply, the simulator chooses an attack sample from the attack probability
distribution which is determined by the Attacker profile.

We have introduced different probability distributions for each Attacker type,
only for testing purposes. Nevertheless, iRouting is optimal regardless of the
probability distribution of a malware type to be chosen by the Attacker; a petition
that is formally consolidated by the mathematical results presented in sections 4
and 5 as well as the simulation results uncovered in this section.

7.4. Experiments

We have considered 5 Cases each referring to different simulation times: 10,
20, 40, 60, and 120 mins. For each Case we have simulated 1,000 replies, which
are UDP messages of length 512 bytes with delay limit 100 seconds, for a fixed
network topology. Yet we refer to the run of the code for the pair 〈Case,#replies〉
by the term Experiment. We have repeated each Experiment for 10 independent
network topologies to get a clear idea of the results’ trend. We do that for all 5
Cases and each type of Attacker profile. Thus we simulate, in total: 5 Cases ×
1, 000 replies× 10 network topologies = 50, 000 replies.

7.5. Comparisons

We compare iRouting against AODV, DSR, and custom-made routing proto-
col called Proportional Routing (PR), for different Attacker types.

PR is computed as follows. First, by using the game matrix, the Defender
computes the average utility value for each row, let it be

Ûd(rj) =

∑M
ml=1 Ud(rj ,ml)

M
, ∀ rj ∈ [R]. (29)

Then, the probability of route rj to be chosen equals:

1− Ûd(rj)∑R
r=1 Ûd(r)

. (30)
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According to the results illustrated in Figures 2 - 4, iRouting consistently out-
performs the rest of the protocols, in terms of both Defender’s expected utility and
average detection rate, for all different simulation times and Attacker types. The
results show that iRouting achieves its highest average malware detection rate
(∼65%) against a Uniform Attacker (non-strategic Attacker), and its worst rate
against a Weighted Attacker. In the case of a Nash Attacker, iRouting has almost
22% higher detection rate than PR, 6% than DSR, while it is twice more efficient
(i.e. ∼11%) than AODV. For a Weighted Attacker, PR behaves differently as it
achieves approximately 6% lower average detection rate than iRouting, in con-
trast to DSR and AODV, which perform worse, as opposed to the Nash Attacker
case, since the difference of their average detection rate compared to iRouting
becomes double (i.e.∼12% for DSR and 24% for AODV). Finally, for a Uniform
Attacker, the difference, in terms of detection rate, compared to iRouting, is
almost the same for both DSR and PR, which is approximately equivalent to
8%. AODV still has the worst average detection rate among all protocols by
having 24% worse rate than iRouting.
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Figure 2: Malware detection rate in presence of a Nash attacker.
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Figure 3: Malware detection rate in presence of a Uniform attacker.
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Figure 4: Malware detection rate in presence of a Weighted attacker.

According to Figures 5 - 7, iRouting achieves the best performance in terms of
average expected utility among all protocols. More specifically, iRouting improves
the average expected utility, in the case of a Nash Attacker, by, in average, 49%,
17%, and 7% compared to PR, AODV, and DSR, respectively. We notice that
the Defender’s utility in iRouting is similar to the one achieved when DSR is
used. The reason for this is that DSR improves computational cost as opposed
to iRouting more than AODV and PR while exhibiting the best detection rate
among AODV and PR. Average improvement values are slightly more pronounced
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for a non-strategic Uniform Attacker; 16%, 68%, and 37%, as opposed to the
same protocols. The situation is similar for a Weighted Attacker, in which case
the corresponding improvement values are 18%, 53%, and 20%. We also notice
that the behaviour of all protocols but iRouting is stochastic despite of iRouting
having steadily the best performance.
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Figure 5: Utility of the Defender in presence of a Nash attacker.
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Figure 6: Utility of the Defender in presence of a Uniform attacker.
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Figure 7: Utility of the Defender in presence of a Weighted attacker.

8. Conclusion

In this paper, we have formally investigated how to select an end-to-end path
to deliver data from a source to a destination in device-to-device networks under
a game theoretic framework. We assume the presence of an external adversary
who aims to infect “good” network devices with malware. First, a simple yet
illuminating two-player security game, between the network (the Defender) and
an adversary, is studied. To devise optimal routing strategies, optimality analysis
has been undertaken for different types of games to prove, in theory, that there
is a Nash equilibrium strategy that always makes the Defender better-off. The
analysis has shown that the expected security damage that can be inflicted by
the Attacker is bounded and limited when the proposed strategy is used by the
Defender. Network simulation results have also illustrated, in practice, that the
proposed strategy can effectively mitigate malware infection. In future work, we
intend to investigate machine learning algorithms (e.g. boosting) to convert weak
learners (e.g. devices with limited number of anti-malware controls) to strong
ones.
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