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Abstract—Nowadays, mobile users have a vast number of
applications and services at their disposal. Each of these might
impose some privacy threats on users’ “Personally Identifiable
Information” (PII). Location privacy is a crucial part of PII,
and as such, privacy-aware users wish to maximize it. This
privacy can be, for instance, threatened by a company, which
collects users’ traces and shares them with third parties. To
maximize their location privacy, users can decide to get offline
so that the company cannot localize their devices. The longer
a user stays connected to a network, the more services he
might receive, but his location privacy decreases. In this paper,
we analyze the trade-off between location privacy, the level of
services that a user experiences, and the profit of the company.
To this end, we formulate a Stackelberg Bayesian game between
the User (follower) and the Company (leader). We present
theoretical results characterizing the equilibria of the game. To
the best of our knowledge, our work is the first to model the
economically rational decision-making of the service provider
(i.e., the Company) in conjunction with the rational decision-
making of users who wish to protect their location privacy. To
evaluate the performance of our approach, we have used real-data
from a testbed, and we have also shown that the game-theoretic
strategy of the Company outperforms non-strategic methods.
Finally, we have considered different User privacy types, and
have determined the service level that incentivizes the User to
stay connected as long as possible.

Index Terms—Game theory, localization, privacy.

I. INTRODUCTION

The prevalence of smartphones brings to end users not only

new applications and services but also privacy risks. These

risks are due to the possible disclosure of vast amount of

private information. In this paper, we investigate how location

privacy is affected by the amount of time a User is connected

to a wireless local area network (WLAN). We propose a game-

theoretic model to capture the interaction between a Company

and a User. The former offers some services to the latter, while

he is connected to a WLAN that belongs to the Company.

We assume that the Company uses a wireless communication

technology to localize users in order to increase its profits by

launching targeted advertisements or by selling User location

data to third parties. It is worth noting here that our analysis

is not restricted to localization within a WLAN. It can, for

instance, be rectified to increase location privacy in scenarios

where phones can be tracked without using their GPS or WiFi

data, e.g. by studying only their power usage over time, as

in [1].

Our work is motivated by the observation that location dis-

closure entails different privacy risks, and we can realistically

say that the location data is valuable to the Company. Suppose,

for example, that the Company has established its wireless

network within a shopping centre. The location data of the

visitors can be utilized for:

• optimization of stores: the Company can optimize the

store design based on heat-maps of customer movements;

• targeted advertisements: if the Company knows the loca-

tion of customers, it can send product information based

on their location, creating location-based spam;

• profiling: from the User’s long-term location information,

the Company can create profiles, and use them for strate-

gic decisions, or even sell this information to third parties.

In order to obtain the desired location data, the Company

establishes a passive localization system based on signal in-

formation (e.g., Received Signal Strength (RSS)) of the users’

devices. During connection time, the User can be localized

and therefore the more the User stays connected, the more

location traces can be collected by the Company. The latter

offers services to the User, which can compensate the location

privacy loss. These services may include free broadband

access, geolocation services, and discounts for certain products

or lotteries.

This paper is organized as follows. The system model,

including both the Company and the User, is described in

Section II. In Section III, we formulate the Location Privacy

Game (LPG) by defining the players’ strategies, types, and

payoffs. Section IV is dedicated to the theoretical analysis

presenting the equilibria conditions of the game, and deriving

the User’s best response and the Company’s optimal strategy

in LPG. In Section V, we present the performance evaluation

results, which demonstrate the effectiveness of our game-

theoretic approach. The related work is discussed in Section
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VI, while Section VII concludes the paper.

II. SYSTEM MODEL

In our model, we assume a Company which controls the

communication infrastructure (CI) (e.g.,WiFi network) of a

building (e.g., a shopping centre) and offers services to the

visitors when they are connected to CI. We consider the User

as the entity that can utilize these services, and at the same

time, he can be located by the Company, which leads to

suffering some location privacy loss. For a list of symbols

used in this paper, see Table I.

A. Passive Localization System

We assume that the Company maintains a passive indoor

localization system to determine the location l(τ) of the

User at time τ . The passive localization system determines

a location estimate lest(τ), which is an approximation of

the User’s true location at time τ . The precision of this

approximation is determined by the number of data packets

that the User transmits per second, i.e., the more data the User

sends the more precise lest(τ) becomes; however, modeling

this relationship is out of the scope of this paper. This approach

is different from cases where the User actively reports his

location in order to use LBSs [2], [3], as we assume that

localization occurs without the User’s active participation.

Any position estimate lest(τ) is biased with an error

lerr(τ) := ‖l(τ)− lest(τ)‖ . (1)

As the User is moving, lerr(τ) can take different values (i.e.,

lerr(τ) is a random variable). We denote the expected value

E[lerr(τ)] by l̂.

B. Location Privacy

We assume that the User is roaming within the Company’s

area for time T ∈ Z, but his device stays connected to the CI

of the Company only for time t ∈ R : δ ≤ t ≤ T , where δ is

very small value. We have assumed here that every User needs

some minimal amount of connection time δ, for example, in

order to become aware of the services that the Company offers.

The lower the value of t, the lower the location privacy loss

of the User, as the User can be located only during t, since
there are no data packets transmitted when the User is not

connected. Then, the Users’ location privacy, when connected

to CI for time t, equals

p(t) :=
T

t
l̂. (2)

In order to increase his location privacy, the Users seeks a

minimum t with respect to some minimum required service

level, which will define later in this section. This is based on

the assumption that the longer the User stays connected, the

higher level of service he receives.

C. User Types

In this paper, we assume that there are multiple User types.

This is motivated by real-world scenarios where a company

provides some services and several users (i.e., of different

TABLE I
LIST OF SYMBOLS

Symbol Description

l̂ Expected localization error

T User visiting time

A Set of User types

αi Likelihood of the User being of type i
Πi Privacy factor for type i User

ti Connection time of type i User

pi Location privacy of type i User

δ Very small value, lower bound of the connection time

S Company’s offered service level

S∗ Upper bound of Company’s offered service level

Ŝ Expected service level

σ User experienced service level

Θ Unit service cost

Ξ Unit service benefit

φj Probability of the j-th service level to be chosen

SU Set of User’s pure strategies

SC Set of Company’s pure strategies

μi Threshold value of the offered expected service level,
where the best response strategy of type i User changes

types) are roaming within its service area. The User type

is determined by the User’s preference to protect his location

privacy. For a User of type i ∈ A, where A is the set of User

types, his privacy preferences are modeled by Πi ∈ [0, 1],
which we call the privacy factor. For instance, Πi = 1 models

a User who completely ignores the service provided by the

Company in favor of maximizing his privacy. We assume that

Πi is entered by the User on his mobile device.

We let ti denote the connection time that a User of type

i chooses. Thus, the location privacy of User type i, for

connection time ti, is given by pi = T
ti
l̂, where we denote

pi(ti) by pi for convenience.

D. Offered and Experienced Service Level

We assume that the Company can offer a service level

S ∈ Z, with 0 < S ≤ S∗, to the User. The service level

S represents the highest possible additive level of the offered

services. We differ the User’s experienced service level σ(t, S)
from S, and we assume that σ(t, S) = S if and only if the

User stays connected for t = T ; otherwise, σ(t, S) < S. It is
easy to see that the highest possible service level that the User

can experience equals S∗, and it can be obtained only when

the Company offers S∗ and the User chooses t = T .

The experienced service level σ(t, S) is modeled as a linear

non-decreasing function. In practice, σ(t, S) is discrete (i.e.,

the Company gives out a discount or not). Therefore, σ(t, S)
gets a connection time t and an offered service level, and it

provides an attainable discrete service level as follows

σ(t, S) :=
t

T
S. (3)

III. LOCATION PRIVACY GAME

In this section, we define the Location Privacy Game (LPG),

which is a 2-player Bayesian Stackelberg game between the

Company C and the User U . In the LPG, the leader (Company)
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first commits to his strategy, which is observed by the follower

(User). The Bayesian extension to the Stackelberg game allows

us to capture multiple types of followers, where each follower

has its own payoff values. We denote the set of User types by

A, and the User is of type i with probability αi, decided by

Nature [4].

A. Strategies

In the LPG, the Company decides upon the offered service

level S with knowledge of the probability distribution over

the different User types. On the other hand, the User wants to

consume some of these services while respecting his location

privacy preferences. The Company advertises S, and the User

can observe this and play his best response by choosing

an optimal t. The Company wishes that the User will stay

connected for as long as possible, and therefore, to be able to

construct the entire path that the User has followed; however,

each offered service level has a cost, which increases with

S. This cost is modeled by the monotonically increasing

function ΘS, where Θ is a positive constant called the unit
service cost. We also assume that the Company benefits

from tracking the User’s location, for example, by selling his

location data to third parties. We model the Company’s benefit

as a monotonically increasing function of t, which is given by

Ξ 1
p(t) , where Ξ is a positive constant called the unit service

benefit.
The pure strategy choice of the Company is to offer a service

level S, and we express its strategy set as SC := {1, . . . , S∗}.
We also express the set of the User’s pure strategies as SU :=
[δ, T ]. Note that, for the remainder of this paper, we will denote

the j-th service level by Sj , and the connection time chosen

by a User of type i is denoted by ti, as mentioned earlier.

A player’s mixed strategy is a distribution over the set of his

pure strategies. For the Company, the canonical representation

of its mixed-strategy space is a discrete probability distribution

over the set SC . We represent a mixed strategy of the Company

as an |SC |-dimensional vector Φ, where φj is the probability

of offering the j-th service level. In the LPG, we assume that

the User plays only pure strategies, since there always exists a

pure strategy that is a best response for the User, as it is also

explained in [5].

B. Payoffs

1) Company: For a given User type i and strategy profile

(Φ, ti), the Company’s payoff is

U (i)
C (Φ, ti) := Ξ

1

pi
−Θ

∑
j∈SC

φj Sj

=
Ξ

T

1

l̂
ti −Θ

∑
j∈SC

φj Sj . (4)

This payoff is in the form Ψ ti−Θ
∑

j∈SC

φj Sj , where Ψ,Θ,

are positive constants, and

Ψ =
Ξ

T

1

l̂
. (5)

The overall expected payoff of the Company is a weighted

combination of its expected payoff against all user types. We

represent the Users’ strategies, one per each type, as an |A|-
dimensional vector t = [ti], where ti ∈ SU . Then, from

Eq. (4), we have that the Company’s overall expected payoff

is

UC(Φ, t) =
∑
i∈A

αi · U (i)
C (Φ, ti)

=
∑
i∈A

αi

[
Ψ ti −Θ

∑
j∈SC

φj Sj

]
. (6)

2) User: For a given offered service level S and connection

time ti, the User’s payoff is determined by both the achieved

privacy and the experienced service level as follows:

U (i)
U (S, ti) := Πi pi + (1−Πi)σ(ti, S)

= Πi T l̂
1

ti
+ (1−Πi)

1

T
S ti, (7)

which is in the form Ψ1
1
ti
+Ψ2 S ti, where Ψ1,Ψ2 are positive

constants, for a specific User type i, and{
Ψ1 = Πi T l̂

Ψ2 = (1−Πi)
1
T .

(8)

Hence, the User’s payoff for a mixed strategy Φ of the

Company is

U (i)
U (Φ, ti) = Ψ1

1

ti
+Ψ2 ti

∑
j∈SC

φj Sj . (9)

It is easy to see that there is a trade-off between location

privacy and experienced service quality level when choosing t.
For instance, staying connected for long time leads to high σ
but low p, and vice versa.

IV. ANALYSIS

In the analysis, our goal will be to find the User’s best

response and the Company’s optimal strategies, which are

defined as follows.

Definition 1: A User strategy is a best response if it

maximizes the User’s payoff, taking the Company’s offered

service level as given.

The standard solution concept for Stackelberg games is the

Strong Stackelberg Equilibrium (SSE) [6].

Definition 2: At the Strong Stackelberg Equilibrium (SSE)

of the LPG

1) for every type i, the User of type i plays a best-response

t∗ to any Company strategy Φ, that is,

U (i)
U (Φ, t∗) ≥ U (i)

U (Φ, t), ∀ t �= t∗;

2) the Users break ties in favor of the Company, that is,

when there are multiple best responses to a Company

strategy Φ, the Users play the best responses t∗ that

maximize the Company’s payoff:

UC(Φ, t∗) ≥ UC(Φ, t), ∀ t best response;

10081008

Authorized licensed use limited to: University of Greenwich. Downloaded on February 21,2023 at 22:18:05 UTC from IEEE Xplore.  Restrictions apply. 



3) the Company plays a best-response Φ∗, which maxi-

mizes its payoff given that the Users’ strategies are given

by the first two conditions (i.e., Users always play best

responses with tie-breaking in favor of the Company):

UC(Φ∗, t∗(Φ)) ≥ UC(Φ, t∗(Φ)), ∀Φ,

where t∗(Φ) denotes the Users best responses with tie-

breaking to a Company strategy Φ.

Note that, in our game, the tie-breaking rule has no practical

implications, it merely eliminates some pathological math-

ematical cases where the game would have no equilibrium

otherwise.

Since the Company’s equilibrium strategies maximize its

payoff, given that Users maximize their own payoffs, we will

refer to them as optimal strategies for the remainder of the

paper.

Definition 3: A Company strategy is optimal if it maximizes

the Company’s payoff given that the User will always play

a best-response strategy with tie-breaking in favor of the

Company.

A. Representing the Company’s Mixed Strategies

First, observe that both the Company’s and the User’s

expected payoffs depend on the Company’s mixed strategy Φ
only through the expected service level

∑
j∈SC

φj Sj . To sim-

plify our analysis, we now introduce Ŝ to denote the expected

service level. For any mixed strategy Φ of the Company, we

can compute the corresponding Ŝ as Ŝ =
∑

j∈SC
φj Sj . Then,

we can express the Company’s expected payoff as

UC(Ŝ, t) =
∑
i∈A

αi

[
Ψ ti −Θ Ŝ

]
(10)

and the User’s expected payoff as

U (i)
U (Ŝ, ti) = Ψ1

1

ti
+Ψ2 ti Ŝ. (11)

Furthermore, it is also clear that, for any Ŝ ∈
[minj∈SC

Sj ,maxj∈SC
Sj ], there exists a mixed strategy Φ

for the Company such that
∑

j∈SC
φj Sj = Ŝ. Hence, we

can use Ŝ ∈ [minj∈SC
Sj ,maxj∈SC

Sj ] to represent the

Company’s mixed strategies, and the problem of finding an

optimal strategy reduces to finding an optimal Ŝ value.

B. User’s Best Response

In order to find an optimal strategy for the Company, we

first have to characterize the Users’ best-response strategies.

Lemma 1: For any Company strategy Ŝ, the User’s best

response is either δ or T .

Proof: The domain of the payoff function U (i)
U (Ŝ, ti)

is ti in [δ, T ]. Then, we can compute the first derivative of

U (i)
U (Ŝ, ti) with respect to ti as

∂U(i)
U

∂ti
= −Ψ1

1
t2i

+ Ψ2 Ŝ.

Next, we can compute the second derivative of U (i)
U (Ŝ, ti)

with respect to ti as
∂2U(i)

U

∂t2i
= 2Ψ1

1
t3i

+ 0 > 0. Since the

second derivative is always positive on [δ, ti], we have that

the payoff function U (i)
U (Ŝ, ti) is a convex function of ti. It

follows from the convexity of the function that the maximum

payoff is attained at one of the endpoints δ and T . Therefore,

the User’s best response is either δ or T .
Theorem 1: If User of type i plays a best-response strategy

and breaks ties in favor of the Company, then his strategic

choice for a Company strategy Ŝ is

• ti = δ if Ŝ < μi,

• ti = T if Ŝ ≥ μi,

where

μi =
Ψ1

Ψ2

1

δ T
. (12)

The above theorem basically shows that the User’s best

response is a non-decreasing right-continuous step function

of Ŝ (see Fig. 1 for an illustration). Note that, if the threshold

μi is outside the interval [minj∈SC
Sj ,maxj∈SC

Sj ], then the

best response is constant.

Ŝ

ti

δ

T

minj∈SC Sj
μi maxj∈SC Sj

Fig. 1. Illustration of the User’s best response with tie-breaking as a function
of the Company’s strategy Ŝ.

Proof: From Lemma 1, we have that the User’s strategic

choice is either δ or T . Since the Company’s payoff is always

an increasing function of ti, the User has to choose T if both

δ and T are best responses, as the User breaks ties in favor of

the Company. Hence, it remains to characterize the case when

δ is the only best response. The strategy δ is a better response

than the strategy T if and only if

U (i)
U (Ŝ, δ) > U (i)

U (Ŝ, T )⇒ Ψ1

δ
+Ψ2 δ Ŝ >

Ψ1

T
+Ψ2 T Ŝ

⇒ Ψ1 (
1

δ
− 1

T
) > Ψ2 Ŝ (T − δ)⇒ Ψ1

T − δ

δ T
>

Ψ2 Ŝ (T − δ)⇒ Ŝ <
Ψ1

Ψ2

1

δ T
. (13)

C. Company’s Optimal Strategy
Lemma 2: Suppose that we are given a set of User strategies

t = (t1, t2, . . . , tSU
), and the Company’s strategy space is

limited to Ŝ values for which t is a best response. Then, the

Company’s payoff is a strictly decreasing function of Ŝ.
Proof: We can reformulate the Company’s payoff func-

tion as

UC(Ŝ) =
∑

i∈A αi

[
Ψ ti −Θ Ŝ

]
= −Θ︸︷︷︸

<0

Ŝ +
∑
i∈A

αi

[
Ψ ti

]
︸ ︷︷ ︸

constant

. (14)
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Hence, on this limited strategy space, the Company’s payoff

is a strictly decreasing function of Ŝ.
Theorem 2: The Company’s optimal strategy is either

minj∈SC
Sj or one of the threshold values μi defined in

Theorem 1.

Proof: The Users’ threshold values μ1, μ2, . . . , μ|SU | di-
vide the Company’s strategy space [minj∈SC

Sj ,maxj∈SC
Sj ]

into at most |SU | + 1 contiguous intervals. From Lemma 2,

we have that the Company’s payoff is strictly decreasing on

each one of these intervals. From Lemma 1, we have that each

of these intervals is left-closed (see Fig. 2 for an illustration).

Therefore, the Company’s payoff attains its maximum at one

of the left endpoints, that is, either at minj∈SC
Sj or at one

of the threshold values μi.

Ŝ

UC

minj∈SC Sj
μ1 μ2 maxj∈SC Sj

Fig. 2. Illustration of the Company’s expected payoff as a function of its
strategy Ŝ. In this figure, the optimal strategy is μ1.

V. RESULTS

For the purposes of this section, we have used a wireless

(IEEE 802.11) localization testbed to derive realistic expected

localization error l̂ values, which we have then used to derive

the payoffs of the Company and the User. We have under-

taken simulations to compare the payoffs of different User

types. Additionally, we have compared the Bayesian Company

strategy with a strategy that assumes that all the Users have

the same average Πi value. Finally, we have demonstrated

the benefit of our game-theoretic solution as opposed to non-

strategic decisions.

For this case study, we define the set of possible expected

service levels as {1, 2, . . . , 10}. Since LPG is a Stackelberg

game, the User is aware of these service levels and he chooses

the one that maximizes his payoff. On the other hand, the

Company chooses an optimal Ŝ ∈ {1, 2, . . . , 10}. In our

testbed, the measurement stations (MSs) are devices that

use the IEEE 802.11 protocol (i.e., WiFi) and their wireless

cards are set into monitor mode. We performed practical

measurements by using an IEEE 802.11 testbed. We have

generated Received Signal Strength (RSS) values as inputs

to our localization algorithm. To generate these values, we

use the formula [7]

PRi
= P0(d0)− 10ni log10

di
d0

+X, where (15)

• PRi is the received power at station i;
• P0(d0) is a reference power measured at distance d0;

• ni is the path loss exponent, which depends on the

environment between User and measurement station i;
• di is the distance between MS i and User’s device;

• X is a zero-mean log-normal distributed random variable

reflecting the flat fading with standard deviation εX .

We have used a Nexus 4 mobile device, which sends 1000

packets per second, and we have selected twelve locations

where the User could be. We have taken 1000 measurements

at each of these locations, for 4 directions, resulting in 4000

measurements for each location. By averaging these measure-

ments we have derived ni = 0.75 ∀i, d0 = 0.7 meters,

P0(d0) = −59, and εX = 1. We use the previously identified

values and (15) to simulate and derive a mean localization

error when different number of packets are sent by the User

device. The latter affect the localization error because of

the flat fading X . Therefore, we use 1000 random locations

from the interval [0, 10] × [0, 10] and locate the User using

multilateration [8, p. 164]. We assume three different values

1000, 500, and 200 for the amount of data sent by a device

resulting in the mean localization errors 40.12m, 46.64m,

and 58.04m, correspondingly. The errors depend strongly on

the environment and obstacles (e.g., moving people, walls) in

the propagation path. We also see that multilateration does

not perform well at all. However, the performance of this

localization system falls out of the scope of this paper.
Following the results of Westin [9], we classify the users

into the following three categories: Privacy Fundamentalists

(PFs); Privacy Unconcerned (PUs); and Privacy Pragmatists

(PPs). According to [9], PFs “reject the consumer-benefit or
societal-protection claims for data uses and sought legal-
regulatory privacy measure;” PUs are “ready to supply their
personal information to business and government and reject
what is seen as too much privacy fuss;” and PPs “examine the
benefits to them of the data collection and use, want to know
the privacy risks and how organizations propose to control
those, and then decide whether to trust the organization or
seek legal oversight.” Therefore, we define the set of User

types as A = {PU, PP, PF}, and we set their corresponding

privacy factors Πi as {0.2, 0.5, 0.8}. We have simulated a

scenario where the User’s minimal connection time is δ = 2,
and the unit service benefit Ξ is 50% higher than the unit

service cost Θ. Note that the above privacy factor values

have been chosen for the purpose of evaluating our model

and they should not be considered as a recommendation from

the literature. We also recognize that in real-life scenarios we

might notice the “privacy paradox”, according to which people

tend to express extreme privacy preferences but act differently,

in a rather erratic way. However, in our work here, we assume

that users are rational entities whose actions are consistent

with their privacy preferences.
Fig. 3 shows the Company’s payoff for the different mean

localization error values, as discussed previously. We notice

that for l̂ = 40.12m, UC becomes negative when T = 17, and
for both l̂ = 46.64m and l̂ = 58.04m, when T = 7. These

low values of total connection time demonstrate the need for

an effective localization system, if the Company decides to
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Fig. 3. Company’s payoff for different number of packets sent by the User
device.

implement the model discussed in this paper.

For the remainder of this paper, we assume that l̂ = 2m.

In Fig. 4 we compare the payoffs arising from the optimal

Bayesian Company strategy and from the optimal “Averaging

strategy.” Both strategies are evaluated in the Bayesian model,

assuming that User types are uniformly distributed. The former

strategy considers the differences between the User types,

and as a result, correctly assumes that the privacy factor Πi

is drawn from {0.2, 0.5, 0.8} uniformly at random. On the

other hand, the Averaging strategy assumes that the users

are homogeneous and that the privacy factor always takes its

expected value 0.5 (i.e., assumes a single User type which

has the average Π value 0.5). This comparison allows us to

determine how much the Company can gain from knowing the

actual distribution of the User types. For visiting time T = 84
minutes, the Company’s payoff decreases with T for both

strategies. However, we notice that the Bayesian Company

strategy outperforms the Averaging strategy when T > 36.
Furthermore, the Averaging and Bayesian strategies give neg-

ative payoffs for T > 51, and T > 82 correspondingly. Given

that when negative payoffs are reached the Company must

rather decide not to provide any services, the Bayesian strategy

gives 31 minutes extra time for the Company to make profit.

More importantly, in Fig. 5 we show how the Company

benefits from following the Stackelberg strategy as opposed

to non-strategic decisions, such as the maximum Ŝ value 10,

the minimum Ŝ value 1, and also the weighted Ŝ value. The

latter is given by first assuming that the Company chooses as

expected service levels [2, 5, 8] when the User privacy factors

are [0.2, 0.5, 0.8]. Secondly, the Company multiplies each Ŝ
value by the probability αi of a User being of type i.

Following the results of [9], we have used the probability

distribution α = [α1, α2, α3] = [0.2, 0.55, 0.25] over A and,

therefore, over {0.2, 0.5, 0.8} for the Bayesian model. We

assume that the Company is aware of α. Thus, the Company

can compute its optimal expected service level, by using

Eq. (10). It is easy that, for the weighted strategy, given α,

we have that Ŝ = 0.2 · 2 + 0.55 · 5 + 0.25 · 8 = 	5.15
 = 5.

First, we notice that for all of the Ŝ values, the Company’s

payoff is a decreasing function of the User’s visiting time T in

this Bayesian model. More specifically, the results show that

if the Company chooses the Max strategy, its payoff becomes

negative for T > 10, while for the Min strategy, the Company

can keep providing services for 21 extra minutes (T = 31),
before its payoff becomes negative. This time is improved by

20 minutes when the Company chooses the weighted value,

leading to T = 51 before its payoff becomes negative. The

best performance is achieved when the Company chooses

the Ŝ determined by the Strong Stackelberg Equilibrium of

the LPG. This allows the Company to make profit (i.e.,

having positive payoff), for 57 minutes. Although the 6 extra

minutes improvement of the Company’s payoff per User is not

remarkable, we must note that such an improvement leads to

significantly higher Company profits when considering a high

number of users, as in realistic scenarios.

It is also worth noting that for T > 51, the Company’s

payoff decreases significantly (reaching −6.529), when the

weighted value is chosen. On the other hand, although the

Company’s payoff becomes negative for T > 57, its value

remains−0.0184 for the rest of the simulated time. This can be

useful if we assume that the Company occasionally decides not

to stop offering services immediately after its payoff becomes

negative, in favor of its Users.

Besides investigating the Company’s payoff, we have looked

into the payoffs of different User types, when the User plays

his best response according to Definition 2. In Fig. 6, we have

plotted these payoffs for the same parameters Θ, Ξ, α as in the

above results, and different visiting times T . We observe that

for a Privacy Fundamentalist (PF), the payoff increases as a

function of the visiting time, even from the very first minute. In

contrast, the payoff of a Privacy Pragmatist (PP) User equals 0

for visiting times less than 60 minutes. For higher values than

this, the User payoff becomes positive taking the value 3.0.

Thereafter, for T > 60 PP’s payoff only increases. Finally, the

payoff of a Privacy Unconcerned (PU) User, remains 0 for the

visiting time values lower than 74. At this point, the payoff
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Fig. 4. Comparing a Bayesian with an Averaging strategy for the Company.
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Fig. 5. Comparing the payoff of the Company for different non-strategic
decisions and the strategy at the Strong Stackelberg Equilibrium (SSE).
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Fig. 6. Payoffs of the different User types at the SSE of the LPG.

becomes 1.85, and thereafter it only increases. However, it

remains lower than the PP’s payoff for the rest of the time.

Note that, both PP’s and PU’s payoffs are lower than the PF’s

payoff at all times, highlighting that the latter is the most

favored User type in our model.

Finally, in Fig. 7, we can see the thresholds for the different

User types as a function of the visiting time. As expected, the

results show that for all User types, threshold values increase

with the visiting time. This means that the higher the visiting

time T , the higher the expected service level Ŝ must be for

the User to stay connected for T , as opposed to remaining

connected for a small δ. This happens because the User is

more concerned about his location privacy for longer visiting

periods; therefore, he has to receive a higher Ŝ in order to

consider it worthwhile (i.e., best response) to be connected to

the CI of the Company for T .

Given that Ŝ ∈ {1, 2, . . . , 10}, the results show that a PF

User will not get connected for more than δ minutes when

the visiting time T exceeds 34 minutes, regardless of the

expected service level Ŝ, offered by the Company. Likewise,

a PP User considers staying connected to the Company’s CI

for the whole visiting time, for T values only up to 101
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Fig. 7. Threshold values, in terms of offered expected service levels, where
the User’s best response changes, for the different User types.

minutes, if the required Ŝ is offered. Lastly, a PU User can stay

connected for the maximum simulation time T = 180, for the
“right” Ŝ value. To have a more clear view on how quickly Ŝ
must increase to satisfy the requirements of the different User

types, we have derived the slope of each threshold function

for each User type. For this derivation, we have computed

the derivative of μi with respect to T . Thus, from (12), we

have ∂μi

∂T =
∂

Ψ1
Ψ2

1
δ T

∂T = Ψ1

Ψ2

1
δ = Πi l̂

(1−Πi) δ
. From this, we found

the following slope values: PU: 0.033, PP: 0.1, and PF: 0.3.

We notice that, for the same visiting time, a PF User requires

a 3 times higher Ŝ offered than a PP User, in order to stay

connected for T , and 9 times higher Ŝ offered than a PU User.

VI. RELATED WORK

In this section we discuss state-of-the-art work at the

intersection of game theory and location privacy. A thorough

survey related to this has been published by Manshaei et

al. [2]. The majority of the papers model two players: the

attacker and the user.

According to [10], in order to design an optimal privacy-

protection mechanism it is crucial to take the knowledge of an
attacker into consideration. This means, for example, that the

adversary is aware of the utilized location protection algorithm

and the access profile of the user i.e., the probability distri-

bution describing the user access to Location-based services

(LBS) in a certain region. This assumes, that the user contacts

the LBS sporadically.

Shokri et al. [10] provide a framework to methodologically

integrate this knowledge by using a zero-sum Bayesian Stack-

elberg game in order to derive the optimal protection strategy.

In their scenario, the user is the leader and the adversary is the

follower. They build on the correctness metric explained above

to measure the users’ location privacy. Their game consists of

four steps. First, the Nature selects a location r for the user

to access the LBS. Second, the user protects his/her location

by creating a pseudo-location r′ with a function f . Third, the
attacker observes r′ and tries to infer r using the knowledge of

f and the access profile of the user resulting in an estimation
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r̂. Finally, the adversary pays an amount d(r, r̂) to the user.

Here d(·) is a distance function and represents the estimation

error of the adversary. The authors derive optimal strategies

for both, user and adversary.

Furthermore, Shokri et al. [11] present a privacy preserving

approach relying on user-collaboration. Their solution, called

MobiCrowd, requires the mobile devices to communicate

wirelessly and in a peer-to-peer manner. The mobile devices

keep their context information in a buffer, until it expires,

and they pass it to other collaborative users seeking such

information. This leads to less communication with the service

provider because a user contacts the provider only if there are

no other users, with the requested information, in range. In

this initial work no game theory is used but it is the basis

for [12], where Santos et al. extend their work by analyzing

the collaborative behavior of users in MobiCrowd with game-

theoretic methods. The two Nash game equilibria, which they

have derived, favor mutual cooperation and mutual defection.

In a second game they combine game theoretic analysis with

an epidemic model to investigate the behavior of more than

two users. In this way, they derive the optimal threshold αopt

for cooperation that optimizes the payoff of a user.

Chorppath and Alpcan [13] establish a privacy mechanism-

design game between a company and its mobile users. The

company offers incentives to the users in order them to

report their location with a certain level of accuracy. The

authors derive the total budget that a company must invest

on providing incentives to obtain a desired minimum level of

location accuracy from all the users.

As far as we know, all above papers make the assumption

that users actively report their location in order to use LBSs.

They also look into anonymity issues, and they aim to de-

couple the user identity from his location. However, modern

devices do not come with the capability of changing, for

instance, their users MAC address, and therefore confusing

the attacker about their real identity.

To the best of our knowledge, our work is the first game-

theoretic approach investigating users’ strategies in a passive

localization environment, where location is derived by raw

signal measurements, and the only parameter that the user can

control is the amount of connection time. Finally, our work

is innovative, as it is the first one to model the economically-

rational decision-making of the service provider in conjunction

with rational decision-making of the users who wish to protect

their location privacy.

VII. CONCLUSION

This paper presents a game-theoretic model, in which a

Company incentivizes a User to permit location tracking, by

offering “attractive” service levels based on the different User

types. The User’s location is tracked by a passive localization

system, which is established and maintained by the Company.

We have defined a Stackelberg game, called the Location

Privacy Game (LPG), according to which a User selects the

amount of time he stays connected (i.e., connection time) to

the Company’s network (e.g.,WiFi), and the Company chooses

the level of services that are offered to the User. We have

presented theoretical results characterizing the equilibria of

the game. Then, we have developed an IEEE 802.11 wireless

testbed, which facilitated the computation of different expected

localization errors for a User who is equipped with a mobile

device. We have used these values in our simulations to

demonstrate the superiority of the game-theoretic strategy

as opposed to non-strategic methods. More importantly, we

have considered different User privacy types, as published by

Westin [9], and have determined the service level that must

be provided by the Company to incentivize the User to stay

connected as long as possible to the Company’s network.
Regarding our plans for future work, an interesting and

actively explored research direction is developing information

theory-based metrics for quantifying user privacy. Therefore

modeling user and service provider decision processes using

privacy games and by integration of such metrics is another

direction that immediately follows. Furthermore, plans include

a model extension that will facilitate user privacy within the

realm of the Internet-of-Things, where localization capabilities

are more often the case than the exception.
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