
Dynamic decision support for resource offloading in
heterogeneous Internet of Things environments

Ali Jaddoaa, Georgia Sakellaria,∗, Emmanouil Panaousisa, George Loukasa,
Panagiotis G. Sarigiannidisb

aComputing and Mathematical Sciences, University of Greenwich, London, UK
bEngineering Informatics and Telecommunications, University of Western Macedonia,

Kozani, Greece

Abstract

Computation offloading is one of the primary technological enablers of the Inter-

net of Things (IoT), as it helps address individual devices’ resource restrictions.

In the past, offloading would always utilise remote cloud infrastructures, but

the increasing size of IoT data traffic and the real-time response requirements

of modern and future IoT applications have led to the adoption of the edge

computing paradigm, where the data is processed at the edge of the network.

The decision as to whether cloud or edge resources will be utilised is typically

taken at the design stage based on the type of the IoT device. Yet, the con-

ditions that determine the optimality of this decision, such as the arrival rate,

nature and sizes of the tasks, and crucially the real-time condition of the net-

works involved, keep changing. At the same time, the energy consumption of

IoT devices is usually a key requirement, which is affected primarily by the time

it takes to complete tasks, whether for the actual computation or for offloading

them through the network.

Here, we model the expected time and energy costs for the different options

of offloading a task to the edge or the cloud, as well as of carrying out on the

device itself. We use this model to allow the device to take the offloading decision

∗Corresponding author
Email addresses: A.H.Jaddoa@gre.ac.uk (Ali Jaddoa), G.Sakellari@gre.ac.uk

(Georgia Sakellari), E.Panaousis@gre.ac.uk (Emmanouil Panaousis), G.Loukas@gre.ac.uk
(George Loukas), PSarigiannidis@uowm.gr (Panagiotis G. Sarigiannidis)

Preprint submitted to Simulation Modelling Practice and Theory: Special Issue: Fog ComputingNovember 13, 2019



dynamically as a new task arrives and based on the available information on

the network connections and the states of the edge and the cloud. Having

extended EdgeCloudSim to provide support for such dynamic decision making,

we are able to compare this approach against IoT-first, edge-first, cloud-only,

random and application-oriented probabilistic strategies. Our simulations on

four different types of IoT applications show that allowing customisation and

dynamic offloading decision support can improve drastically the response time of

time-critical and small-size applications, and the energy consumption not only

of the individual IoT devices but also of the system as a whole. This paves the

way for future IoT devices that optimise their application response times, as well

as their own energy autonomy and overall energy efficiency, in a decentralised

and autonomous manner.

Keywords: Internet of Things, IoT offloading, computation offloading, edge

computing, cloud computing, decision support, EdgeCloudSim Simulator

1. Introduction

As a result of their resource restrictions, Internet of Things (IoT) devices typ-

ically rely on the storage, communication, and most significantly, computation

resources of remote cloud infrastructures, for example to run computationally

intensive artificial intelligence algorithms. This traditional IoT-cloud approach

has worked well in the first years of IoT, but is unlikely to be able to efficiently

meet the requirements of future IoT applications [1, 2]. IoT applications are

becoming increasingly demanding in terms of real-time response requirements,

and at the same time, the data they produce is increasing dramatically. In-

dicatively, the Cisco Global Cloud Index has estimated that IoT data will reach

507 ZB per year by 2019, which is 49 times higher than the current total global

data centre traffic (10.4 ZB) [3]. Pushing the computations and data to the

cloud from IoT devices that have limited bandwidth or are connected to the

cloud through unreliable networks costs IoT services in terms of response time

and availability. Moreover, due to their energy limitations, a primary goal is

2



to reduce transmission and scheduling computation to what is practical for the

power capabilities of IoT devices.

The edge computing paradigm, where the data is processed or even produced

at the edge of a network, was introduced in response to these requirements and

is now considered a core enabler of the 5th generation of mobile communications

(5G) and the IoT [1, 4]. The rationale is that with the significant increase of IoT

data and the limited speed of IoT data transportation, offloading computation

to the edge may allow most of the benefits of the cloud without its key com-

munication disadvantage [5]. However, its fundamental weakness is that unlike

the cloud, which does not have geographical restrictions and has considerably

greater resources, edge devices have to be in proximity to the IoT devices and

their resources are also limited. The choice of whether a task should be pro-

cessed locally, at the edge or at the cloud has been traditionally based almost

entirely on the original design of the system. Here, we propose a Multi-critEria

DecIsion support meChanism for IoT offloading (MEDICI) mechanism that de-

cides dynamically whether an IoT task should be processed locally, at the edge

or at the cloud.

Without loss of generality, we assume an IoT architecture where a variety of

heterogeneous IoT devices and their corresponding applications are connected

to the Internet (and the cloud) through a gateway (Fig. 1) and are directly

connected to the edge devices in proximity. Note that we assume that each

application has a dedicated corresponding device (edge or cloud). Also, in some

IoT architectures the gateway itself can be the edge device for offloading, but

this does not materially change our analysis and modelling.

In detail, this paper’s contributions are the following:

• A response time and energy consumption model for edge IoT, which takes

into consideration the application, device and network characteristics of

the system.

• An offloading decision support mechanism for heterogeneous IoT devices,

each with their own individual requirements, which have the option of

3



Figure 1: Conceptual IoT offloading decision making architecture

processing a task locally or offloading it to the cloud or the edge.

• An extension of the EdgeCloudSim simulator with support for dynamic

offloading decision support to validate our model and compare against

previous families of approaches used in the literature. Our results show

that both response time and energy are improved considerably, not only

at the individual level of each application but also at the global system

level, as the total energy consumption too is improved.

2. Related work on decision making in IoT offloading

The majority of edge offloading decision making mechanisms proposed in

the literature refer to mobile edge computing [6]. For example, Meurisch et al.

[7] address the issue of heterogeneity of the edge or cloud infrastructures for

mobile offloading, where the resource availability of the different edge or cloud

devices can vary considerably, as might the resource requirements of the tasks to

be offloaded. They propose an offloading decision support system that predicts

the completion time and energy consumption by probing edge or cloud devices

with micro tasks only lasting a few microseconds, and using regression models.

Probing has indeed proven very useful in task allocation and admission control

4



[8] problems but introduces a delay overhead which can be inappropriate for

time-sensitive IoT services.

Offloading in IoT environments can differ considerably, not only in terms of

the type of networking protocols and architectures involved, but also in terms of

the nature of typical applications. Additionally, most published work focusing

on IoT offloading mechanisms addresses decisions between two entities only, the

cloud or the edge(s), and omits the IoT device itself. An exception is [9], where

it is up to the individual IoT devices to decide themselves whether they wish

to optimise offloading based on time or energy, and advertise to the other IoT

devices in their network, while a centralised network controller allocates the

available bandwidth among the nodes, giving higher priority to time-sensitive

tasks. The authors demonstrate the usefulness of employing the edge computing

paradigm in comparison to just offloading to the cloud.

In [10], the authors formulate the problem as a computation offloading game

of multiple IoT users requiring access to the limited resources of close-by edge

devices. The assumption is that the users are selfish and only care about max-

imising their own quality of experience, measured in terms of reducing compu-

tation energy and delay. The authors have proposed a near-optimal algorithm

to reduce the complexity of reaching a Nash equilibrium but it is not evident

how it can be implemented in an online, dynamic way.

[11] also proposes a computation offloading game to model the competition

for cloudlet resources between IoT devices. It aims to minimise energy and

delay of the IoT sensors. The authors consider the different technologies of

communication between the different entities. When offloading computation

tasks to cloudlets, IoT sensors transmit data blocks via wireless access points,

while when offloading tasks to the cloud the IoT device connects to the Internet

via the base station. They propose a finite improvement iteration algorithm

to keep the computation complexity of the game algorithm relatively low. The

IoT devices are not considered capable of processing the tasks, and thus are not

included in the offloading decision. However, the actual decision and estimation

of where to offload can be centralised or distributed, whereby the sensors are

5



assumed to run the algorithm. Their evaluations were against Random Selection

(choosing between edge and cloud) and Cloud-only (selecting always the cloud

for offloading) strategies.

An IoT offloading technique is proposed in [12] to manage the offloading of

computing tasks between IoT devices (smart home controller) and the cloud,

based on energy consumption under service time delay restrictions. The authors

propose to use the gateway as a middleware platform to decide between local

processing and the best cloud infrastructure. They propose a static allocation

of resources processed in the smart home controller, based on the application’s

resource requirements and then, at the gateway, a dynamic allocation to the ap-

propriate cloud server based on the energy savings under QoS delay constraints.

The paper does not consider dynamic allocation at the local level or that classes

of IoT devices may be able to perform local processing.

Similarly, [13] proposes a cloud-enhanced home controller that enables com-

putation offloading of smart home applications from the home controller to the

cloud, by ranking them based on predefined requirements, priorities, compute

resources and network bandwidth values. Apart from choosing between process-

ing at the IoT controller or offloading in the cloud, they also propose a degraded

mode of operation when network connection is not possible. The predefined val-

ues can be updated but energy consumption of the devices or local processing

are not considered.

The authors in [14] impose communication bandwidth constraints to man-

age computation offloading and increase the utilisation of the edge node which

will also lead to energy savings for the IoT devices. They propose an iterative

bandwidth allocation algorithm to better utilise the usage of the edge device.

They consider IoT devices with different transmission rates and different of-

floading levels. They assume that the devices will always process locally until

their capacity is reached and then offload. Henceforth, we refer to this type of

strategy as IoT-first.

In [15], Lyu et al. propose a simple offloading scheme, where delay-sensitive

tasks are always given high priority and are executed immediately at the edge

6



while other tasks are offloaded to a remote cloud. Thus, the edge only executes

delay-sensitive tasks, while the cloud is used for the rest.

Several researchers address the need of optimising both time energy. For

example, Du et al. [16] formulate an optimisation problem to minimise the en-

ergy consumption or latency when offloading to fog or cloud nodes. Similarly,

in [17], Liu et al. propose a multi-objective optimisation model which tries to

optimise energy consumption, computation latency and payment overhead for

fog computing offloading by finding the optimal transmission power and offload-

ing probability. However, these optimisation solutions are based on exhaustive

search and traditional iteration methods, which makes their convergence too

slow for practical real-world applications [18].

Benedetto et al. [19, 6] propose MobiCOP-IoT which is a mobile code of-

floading system for IoT applications. For estimating the network parameters,

MobiCOP-IoT samples the network every 15 minutes or probes whenever it is

needed. To calculate the execution time for a given task, it uses historical data,

assuming that the same tasks always take the same time to be executed.

Recently, Jalali et al. [20] introduced a task allocation strategy called DEFT.

It tries to allocate tasks to nearby discovered devices within a local trusted net-

work and a cloud server. The offloading decision is made based on the assump-

tion that the IoT device can act as a task requester or a task performer. To do

so, an IoT requester broadcasts a request to all known devices, enquiring about

parameters such as CPU, memory, and transmission rate. These parameters

are fed to machine learning algorithms (regression and ensemble models) for

predicting how the available nodes would behave for a given task. However, the

variation of a task’s size or the energy consumption are not considered when

making the decision.

Recent work involving computation offloading proposes to use machine learn-

ing for the estimation of the response times when making the decision of where

to offload. For instance, Alam et al. [21] propose an offloading mechanism

that uses Deep Q-learning based code offloading to decide amongst a set of dis-

tributed fog nodes, a cloud and mobile devices, while in [22], Alelaiwi proposes

7



to use deep-learning in order to predict the response times of a task based on

historical observations or pre-defined parameters such as CPU, memory and

bandwidth consumption. The use of deep learning though usually translates

in high computation cost, making these mechanisms often unsuitable for IoT

environments with limited resources.

Reflecting on the literature review, we can observe that the related work does

not take into consideration all aspects of an IoT environment. Most work does

not consider the IoT device capable of processing tasks and mainly concentrates

on the decision between edge and cloud. Additionally, existing work mostly

concentrates on one parameter (either time or energy), and in the case of time,

it doesn’t always include both processing and network delays. When both are

considered, they are either equally weighted for all applications or do not have

provisions to consider the total energy of the system (including the edge or

cloud), and thus not allowing different applications to have different energy/time

requirements or goals (such as reducing their personal energy or the energy of

the system).

Here, we propose a dynamic offloading decision support mechanism for

choosing among the three entities of an IoT environment: local IoT device,

edge and cloud. The decision is based on response time (including processing

and transmission times) and energy consumption (both individual or global),

and can be taken by an IoT device at the moment that a new task is initiated,

based on the current conditions of the network and the device’s own individual

requirements. This allows it to serve highly heterogeneous and dynamic IoT

environments, where individual IoT devices (and their applications) may differ

considerably between each other and the network conditions may be changing.

The decision for where to offload is taken based on the model described in the

next section.

8



3. Offloading model and multi-criteria decision support mechanism

In this section, we model each component of the system to derive an expres-

sion for estimating its response time and energy consumption. The decision on

which target device (the IoT device, the edge or the cloud) should process the

task is taken autonomously on the IoT device itself. Table 1 summarises the

notations used.

Let us consider an IoT application consisting of computational tasks, all of

which can be offloaded. A given task n has size zn, representing the computation

requirements of the task, and input data of size dxn and output data of size

drn . Specifically, dxn and drn represent the data block to be transmitted as

part of offloading (e.g., a video in a CCTV monitoring system) and the data

block to be sent back as the result (e.g., the recognised object in the video)

respectively. Each device D can be of the type IoT device, edge device or cloud

server (D ∈ {IoT,Edge, Cloud}), with processing speed SD. Normally, the

IoT device is the slowest and the cloud is much faster in terms of processing

(SIoT << Sedge << Scloud). We assume that the IoT devices can communicate

with both the edge (e.g., via Wi-Fi, Bluetooth or Zigbee) and the cloud (e.g.,

via WAN or cellular), at different effective transmission rates.

3.1. Processing times

In accordance to the usual representation of processing time in task alloca-

tion problems [23], the time it takes for a task n with size zn to be processed at

a device D is:

T proc
n,D =

zn
SD

(1)

Every time a task arrives at a device D it enters a processing queue. This

can be a single queue (i.e. in the case of the IoT device itself) or one of multiple

queues (in the case of more powerful devices such as the edge or the cloud,

where multiple cores and multiple virtual machines are available, dedicated to

specific IoT applications). We assume that each such queue constantly keeps

track of the number of tasks (and their corresponding sizes) that are currently

9



Table 1: Variables and Notations

Variable Description/Definition

n The task initiated at the IoT device

D The target device where the processing will be performed. This can be

the IoT device itself, the edge or the cloud.

zn Size of task n

dxn Input data size of task n

drn Output data size of task n

SD The processing speed of device D

T proc
n,D The time it takes for task n to be processed locally at device D

W procQueue
n,D The time a task has to wait at the queue of device D before it is

processed

Rx
D The end-to-end throughput when device D transmits data to another

device)

Rr
D The end-to-end throughput when device D receives data from another

device

T x
n,D The time it takes to transmit the input data of task n to device D

T r
n,D The time it takes to receive the output data of task n from device D

p Packet loss probability

l A delay factor due to loss

WnetQueue
n,D The delay due to network queuing for task n

Tn,D The total response time of task n processed at device D

P proc
D The average processing power consumption of device D when busy

P idle
D The average power consumption of device D when idle

P x
D The average power consumption of device D when transmitting data

P r
D The average power consumption of device D when receiving data

Elocal
n,D The energy consumed by device D for processing task n locally

Eoff
n,IoT The energy consumed by an IoT device for offloading task n

Eoff
n,D The energy consumed by device D receiving the offloaded task n

Eoff
n The total energy consumed for offloading and processing task n

Eselfish
n,D The total energy cost of task n in the case of a selfish IoT device

Ealtruistic
n,D The total energy cost of task n in the case of a altruistic IoT device

α Weight denoting preference in minimising response time over energy,

α ∈ [0, 1]

γ Parameter for bringing Tn,D and En,D into a mutually comparable

range of values

10



waiting. When a new task n arrives in device D it cannot be processed until

all previous tasks of its corresponding queue Qproc
n are processed. If k is the

number of tasks waiting in Qproc
n when task n arrives, then we approximate the

time that the task n has to wait in the processing queue as:

W procQueue
n,D =

k∑
i=1

T proc
i,D =

k∑
i=1

zi
SD

(2)

Here, we assume a first-in-first-out processing model in all devices, where

one virtual machine on the edge and one on the cloud is dedicated to one

corresponding application.

3.2. Network delays

When the processing of a task n is offloaded from an IoT device to a target

device D (edge or cloud), there is an additional delay to transmit the task (T x
n,D)

to that device and an additional delay (T r
n,D) to get the result back from that

device to the IoT device.

In accordance with the standard practice in computation offloading mod-

elling [23],[24], [25], [11], the time it takes to transmit a task n from the IoT

to another device D depends on the size of the input data that the task is

associated with (dxn), and the transmission rate Rx
D.

T x
n,D =

dxn
Rx

D

Similarly for receiving the result back, where the size of the result data is

drn and the transmission rate for the connection between the devices is Rr
D:

T r
n,D =

drn
Rr

D

In non-ideal communication conditions, where we consider packet loss due

to congestion or failures, with a probability p, we assume that, the delay in

establishing that a packet is lost and re-transmitting means that each bit lost

incurs an increase in communication delay by a factor l = 1
1−p , l ∈ R+

11



Thus, the above equations become:

T x
n,D = l

dxn
Rx

D

(3)

T r
n,D = l

drn
Rr

D

(4)

We also model imperfect network conditions in the form of congestion, as

expressed by network queuing delays. Similarly to [26], and [27], we assume that

the network between an IoT device and the target device D can be expressed

as a M/M/1 queue with arrival rates λxD, λrD and service rate µx
D, µr

D for

transmitting and receiving accordingly.

The utilisation of the network used to offload to D is ρxD = λxD/µ
x
D, and the

average number of tasks waiting in the network queue for reaching D is

Lx
D =

ρxD
1− ρxD

− ρxD =
(ρxD)2

1− ρxD

Similarly for receiving the result back from D, the utilisation is ρrD = λrD/µ
r
D

and the average number of tasks waiting in the network queue for reaching the

source device is

Lr
D =

ρrD
1− ρrD

− ρrD =
(ρrD)2

1− ρrD
Applying Little’s Law, the average network queue waiting time of task n

offloaded to device D is:

W x,netQueue
n,D =

Lx
D

λxD
=

1

µx
D − λxD

− 1

µx
D

(5)

and for receiving the result back:

W r,netQueue
n,D =

Lr
D

λrD
=

1

µr
D − λrD

− 1

µr
D

(6)

We have considered the network for the transmitted data from the IoT device

to the target device separately from the the one for the response back, since

the input and output average data sizes are different, and thus the M/M/1

parameters are different.

12



3.3. Response time

We refer to response time as the total time it takes for a task n to be

transmitted (first two terms of equation 7) and processed (next two terms of

equation 7) and the result to be returned back to the IoT application (last two

terms of equation 7):

Tn,D = T x
n,D +W x,netQueue

n,D + T proc
n,D

+W procQueue
n,D + T r

n,D +W r,netQueue
n,D

(7)

Of course, in the case that D is the IoT device, where the task is not

offloaded, but is processed locally on the IoT device itself, then T x
n,IoT =

W x,netQueue
n,IoT = T r

n,IoT = W r,netQueue
n,IoT = 0 and Tn,IoT = T proc

n,IoT +W procQueue
n,IoT .

3.4. Energy consumption

Let P proc
IoT be the average power consumed when the processor of the IoT

device is busy, and P idle
IoT be the power consumed when idle. Also, P x

IoT and

P r
IoT are the power consumptions when the IoT device is transmitting to and

receiving data respectively.

If the task n is run locally at the IoT device, then the energy consumption

due to that task is the energy consumed by the IoT device to process it:

Elocal
n,IoT = P proc

IoT T proc
n,IoT (8)

If task n is offloaded to a target device D other than the IoT device, then the

energy consumed by the target device Eoff
n,D is the energy consumed for receiving

the offloaded data at D, processing the task at D, returning the result to the

IoT device, plus the energy consumed by the IoT device Eoff
n,IoT for sending the

data to D, remaining idle while waiting, and receiving the result back from D.

We assume that the IoT device does not initiate a new task until it receives the

result from the previous task and is therefore idle during the offloading response

13



time.

Eoff
n,IoT = P x

IoTT
x
n,D

+ P idle
IoT (W x,netQueue

n,D +W procQueue
n,D

+ T proc
n,D +W r,netQueue

n,D )

+ P r
IoTT

r
n,D

(9)

Also, the energy consumed by D receiving the offloaded task, processing it

and returning the result is:

Eoff
n,D = P r

DT
r
n,D + P proc

D T proc
n,D + P x

DT
x
n,D (10)

A “selfish” IoT device, which is interested only in its own energy efficiency

will aim to minimise Eoff
n,IoT . An “altruistic” IoT device that is interested in

helping improve overall energy efficiency, will aim to minimise the total Eoff
n ,

where:

Eoff
n = Eoff

n,IoT + Eoff
n,D (11)

Summarising in a single expression, the energy cost of n in the case of a

selfish IoT device is:

Eselfish
n,D = 1[D = IoT ]Elocal

n,IoT + 1[D 6= IoT ]Eoff
n,IoT (12)

Similarly, for altruistic IoT devices, it is:

Ealtruistic
n,D = 1[D = IoT ]Elocal

n,IoT + 1[D 6= IoT ]Eoff
n (13)

3.5. The Decision Mechanism

The decision is taken at the IoT device based on a weighted goal metric

consisting of response time and energy. For selfish IoT devices, this is:

Gselfish
n,D = αTn,D + (1− α)γEselfish

n,D (14)

14



Similarly, for altruistic IoT devices:

Galtruistic
n,D = αTn,D + (1− α)γEaltruistic

n,D (15)

Note that α ∈ [0, 1] is a weight denoting the application’s preference in

minimising response time over energy, defined at each IoT device. For time-

critical applications, such as in healthcare IoT, where energy efficiency is not

important, α is chosen to be close to 1, while for applications where energy

efficiency is important but time is not, such as in environmental sensing, α is

chosen to be close to 0. Also, we use parameter γ for bringing Tn,D and En,D

into a mutually comparable range of values (e.g. since the energy of a cloud

node could be in range of thousand joules whilst the time could be in the range

of some seconds or less).

For a task n initiated at the IoT device, the device chosen to perform its

processing is the one that minimises the goal metric for D ∈ {IoT, edge, cloud},

denoted here as Cselfish
n and Caltruistic

n for the two cases:

Cselfish
n = argmin

D∈{IoT,edge,cloud}
Gselfish

n,D (16)

Caltruistic
n = argmin

D∈{IoT,edge,cloud}
Galtruistic

n,D (17)

This decision is taken by each IoT device for its own applications indepen-

dently, based on information requests for obtaining the local queuing states and

processing times, which are communicated between the IoT and the edge, and

the IoT and the cloud. We assume that this communication is given priority

and as such the total time it takes to receive and process these request/response

packets is negligible in comparison with the processing times even during times

of congestion, which is a common assumption in the literature [28].

Note that without loss of generalisation, we considered one edge and one

cloud device, because our aim is to determine whether edge or cloud (or local

processing) should be chosen, rather than which edge or which cloud device

should be chosen. This is not only because the single edge/cloud case is by

15



itself realistic for common smart home or smart office environments, but also

because additional edge and cloud devices would not make a difference to the

model or the decision mechanism. Again, the device chosen would be the one

with the minimum goal value, whether there is one or multiple edge and cloud

offloading options.

4. Performance evaluation

4.1. Simulation environment

We performed our simulations by extending the discrete event simulator

EdgeCloudSim [29], itself based on CloudSim [30] one of most popular simu-

lators for cloud computing environments [31, 32]. EdgeCloudSim allows the

simulation of mobile devices which can execute tasks locally and incorporates a

networking module for WANs and WLANs or a cellular access network model

(3G/4G/5G) between devices. Tasks can be migrated between edge and cloud

virtual machines and allows to add a probabilistic network failure model to

consider the congestion of the network between the devices. It has been used

extensively in the related literature (e.g., [33],[34], and [35]). EdgeCloudSim

does not consider the local device (mobile, or in our case IoT device) in the

processing options. Here, we have further extended it to provide support for

individual decision making and for considering each task’s characteristics and

requirements, as well as network conditions, energy consumption and process-

ing times, as opposed to only predefined probabilities. Also, in our extension,

the tasks are created by a load generator class and can have different require-

ments (specifically as task size in Million Instructions (MI) and size of input

and output data in MB).

Each simulation starts with an initialisation phase, where a load generator

creates a set of tasks based on a Poisson distribution for each application with

parameters such as application type, start time, size, input and output data

size. These parameters are exponentially distributed random numbers based on

the application type. After the list is created, the tasks are sorted based on their

16



start time, and parameters such as the network model between the devices are

initiated, where λD and µD are calculated based on the average data task sizes,

different for input and output. A network model is responsible for computing

the queuing delay of WLAN connections between IoT devices and the edge and

WAN connections between IoT device and cloud for both uploading (task input)

and downloading (task output) directions. Finally, the virtual machines for the

edge and the cloud are initiated and the simulator’s initialisation phase finishes.

When the simulation starts, the tasks are served in a chronological order based

on their start time and regardless which application they belong to. In each IoT

device, an end device manager is responsible for taking the decision of selecting

a place to process based on the decision algorithm and the results are saved in

log files.

4.2. Experimental setup

Our setup consists of an IoT, an edge and a cloud device. For the process-

ing speed configuration of each device, we use Million Instructions Per Second

(MIPS ), which is supported by EdgeCloudSim for measuring processing times

in a reliable way. We adopt it here for reasons of practicality, as is extensively

used in the literature (e.g., [36]). We set the processing speed of IoT devices

at 50 MIPS. An edge device is simulated as a single EdgeCloudSim datacen-

tre, consisting of a host with four virtual machines at a processing speed 1000

MIPS. In our experiments, we equate the transmission rates of the devices to

the available bandwidth for sending or receiving data. We refer to this as the ef-

fective bandwidth. The edge communicates with IoT devices through a WLAN

connection of 5Mbps effective bandwidth. The cloud is also simulated as a sin-

gle EdgeCloudSim datacentre with one host and four virtual machines, each of

which has processing rate of 10000 MIPS. The network between between IoT

devices and cloud is considered a WAN with 2Mbps effective bandwidth. Fi-

nally, we have set the packet loss probability p = 0.11 and thus the delay factor

due to loss l = 1
1−0.11 = 1.12.

In accordance to our energy model (Section 3.4), each device has three modes

17



for energy consumption: processing, transmission and idle. The configurations

of the edge and the cloud devices were chosen based on the iFogSim energy

profiles [37], where for edge and cloud, the power to transmit is practically

equal to the power to process. For the IoT devices, we have run an experiment

using a Raspberry Pi3 device acting as the IoT device and a Watts Up Pro meter

[38] measuring the actual power consumption when idle, transmitting, receiving

and processing a computationally intensive application. Table 2 summarises

these specifications for all devices. Although a Raspberry Pi3 device is much

more powerful of a typical IoT device today, we anticipate that in the future,

IoT devices will become more powerful and thus will consume more power.

Table 2: Device specifications

Device VMs Processing

Rate (MI)

per VM

Effective

Band-

width

(Mbps)

Processing

Power

Consump-

tion

(W)

Transmission

Power Con-

sumption

(W)

Idle Power

Consump-

tion

(W)

IoT 0 50 - 2.3 1.8 1.2

Edge 4 1000 5 107.339 107.339 -

Cloud 4 10000 2 103 103 -

For the purposes of our simulations, we have configured four different appli-

cation types, one for face recognition (such as the smart surveillance cameras

announced by NVIDIA [39]), one for healthcare IoT (as one of the in-home ther-

apeutic IoT applications described in [40]), one for IoT intrusion detection (as

in our robotic vehicle intrusion detection implementation in [41]), and a hypo-

thetical future indoor monitoring device that will be able to not only visualise a

household’s sensor data, but also perform advanced analytics to provide predic-

tions and recommendations to its users. We have chosen these four applications

so that we can have a range of heterogeneous IoT applications with different

specifications (in terms of task size and input/output size) and requirements

18



(in terms of how energy demanding or time critical they are). For instance, the

face recognition application is very demanding computationally and also needs

to send a relatively large input file (e.g. picture) when offloaded. On the other

hand, the computation of the intrusion detection application is moderate and

the input file size is small and the result back is very small, since it might consist

of a simple yes or no answer of whether an attack was detected or not.

These configurations are summarised in Table 3 in terms of task size, input

and output data size and weight α. The value of γ, which brings the time

and energy values to a comparable range, was empirically chosen. For selfish-

MEDICI, the γ is 0.1 for all devices (equation 14). However, for altruistic-

MEDICI (equation 15), if the device is the IoT device then γ = 0.1, but if the

goal G is calculated for the edge or the cloud, then γ = 0.001, since then the

equation also includes the energy of those devices (edge or cloud), which are at

a different range than before.

Table 3: Application Specifications and Requirements

Application Mean Task

Size (MI)

Mean

Input Size

(KB)

Mean

Output

Size (KB)

Individual

Weight (α)

Face

Recognition

4000 1500 500 0.1

Healthcare 2500 3000 50 0.9

Intrusion

detection

750 100 5 0.8

Indoor

monitoring

350 300 300 0.2

5. Simulation results and discussion

Here we evaluate our proposed Multi-critEria DecIsion support meChanism

for IoT offloading (MEDICI). The following are four implementation variants

19



of MEDICI, where we evaluate the differences between selfish and altruistic

IoT devices, for the two cases of having different (individualised) and identical

(non-individualised) α.

• The selfish individualised version (MEDICI-SI ). Each IoT device has

different α according to each application’s needs (table 3) and the energy

to be minimised is the energy of each IoT device.

• The altruistic individualised version (MEDICI-AI ). Each IoT device has

different α according to each application’s needs (table 3), and the energy

to be minimised is the total energy of the system.

• The selfish non-individualised version (MEDICI-SN ). All IoT devices

have the same α (here chosen as 0.5) for all applications, and the energy

to be minimised is the energy of each IoT device.

• The altruistic non-individualised version (MEDICI-AN ). All IoT de-

vices have the same α (here chosen as 0.5) for all applications, and the

energy to be minimised is the total energy of the system.

We compare the above with five approaches which are representative of the

landscape of strategies proposed previously in the literature or used for baseline

comparison:

• Choosing the IoT device first (IoT-first): If the task is small enough,

then it is processed locally until the device’s capacity is reached as in [14].

Otherwise, the edge is chosen until its capacity is reached, in which case

it is offloaded to the cloud. We have put a restriction on the size of the

task for IoT devices (500MI) to avoid a situation where, for applications

with computation intensive tasks, the task would not have finished by the

end of the experiment.

• Offloading to the edge first (Edge-first): The task is offloaded to the edge

until its capacity is reached, and then to the cloud. This is the state of

20



play of most commercial IoT devices that use edge computing. The local

computation at the IoT device is not considered here.

• Individualised predefined probability (Probabilistic): The offloading de-

cision is based on a predefined probability, different for each of the appli-

cations. Here we report the result for the set of probabilities that are em-

pirically measured to have the highest performance. Note that our aim is

to compare this to our own approach, so, choosing the empirically highest

performing configuration of this approach for comparison is meaningful.

We have used the same task size restriction as in IoT-first.

• Offloading only to the Cloud (Cloud-only): All tasks are offloaded to

the cloud. Edge and local computation are not considered. This is the

traditional IoT approach used by most commercial IoT applications, and

considered for comparison also in [11].

• Random Selection (Random): This is a special case of the probabilistic

approach, where the probabilities between the choices are equal as in [11].

Each experiment was run for 1 hour of simulated time. The results presented

here are the averages of 10 runs for each configuration. Figure 2 shows the av-

erage response time for all tasks of each application, in terms of processing time

(including local processing queues, represented in grey), uploading delay (the

time transmitting the input data for the task to be offloaded plus the network

queuing delays, represented in blue) and downloading delay (transmission of the

result (output) data of the offloaded task plus the network queuing delay, rep-

resented in orange). Figures 3 and 4 show the energy consumption at only the

IoT device and the total energy consumption at both IoT device and offloading

target respectively.

Across all cases, the dynamic decision support offered by MEDICI yields

consistently better results for all applications in terms of response time and

energy consumption, both at the IoT device and overall.

For the face recognition application, which is characterised by large mean

21



Figure 2: Average total response time per application

task size, input and output, as well as very low α (i.e., strong preference for

energy efficiency over response time minimisation), the lowest energy cost on

the IoT device is achieved by the selfish MEDICI-SI and -SN. Comparing to

the best-performing non-MEDICI strategy (probabilistic), the energy reduction

achieved at the IoT device was just over 26%. As intended, the lowest total

energy costs are achieved by the altruistic mechanisms, MEDICI-AI and -AN,

with the biggest reduction achieved by MEDICI-AI of almost 35%. In terms of

response time, MEDICI-SI achieved a reduction of 27%.

For the healthcare application, which is characterised by large mean task size,

large mean input size, low output size and very high α (i.e., strong preference

for response time over energy efficiency minimisation), MEDICI-AI was able to

reduce the response time by 14% against Edge-first and the total energy cost

against IoT-first by around 10%. The IoT energy cost reduction, however, was

not significant. This is expected given the application’s very low α.

22



Figure 3: Average energy consumption of each IoT device per app

For the intrusion detection application, which can be offloaded relatively

quickly (lowest input and output size) and has a high value of α, the best-

performing non-MEDICI strategy is cloud-only. Against it, MEDICI-SI achieves

a reduction of over 35% in response time and IoT energy cost. In terms of total

energy, again as intended, the best performing variant is MEDICI-AI with a

reduction of around 31%.

For the indoor monitoring application, which has the lowest mean task size,

significant network traffic when offloaded, and a low value of α, MEDICI-AN

achieves the lowest response time (54% reduction against the probabilistic strat-

egy) and IoT energy cost (40% reduction), while MEDICI-AI achieves the lowest

total energy cost (68% reduction).

Comparing between the two selfish variants, the individualised MEDICI-SI

outperforms the non-individualised MEDICI-SN across all four applications and

for all three metrics. This showcases the importance of addressing the individual

23



Figure 4: Average total energy consumption per application

trade-off preference of each application, as expressed by the parameter α. For

the two altruistic variants, the superiority of the individualised MEDICI-AI over

-AN is observed only in relation to the energy metrics, as their goal functions

differ only in terms of energy and not in terms of response time.

Figure 5 shows the average percentage of tasks that were allocated to each

device per application. It shows that MEDICI appropriately minimises cloud

usage for IoT applications that are not computationally demanding, are time-

sensitive or return large amounts of data as their output. It also appropriately

makes more usage of the cloud when IoT energy consumption is important and

a task is computationally demanding.

6. Conclusions and future work

We have proposed a multi-criteria offloading decision mechanism for hetero-

geneous IoT devices which takes into account not only the execution time of

24



Figure 5: Percentage of tasks run at each device per application

a task in a device but also the time it takes to offload its data and the delays

incurred by the network. Depending on the energy-consciousness of an IoT

user, the device can choose to minimise its own energy or the total energy of

all the devices involved. Our simulations on our extension of EdgeCloudSim

have demonstrated MEDICI’s effectiveness compared to five offloading strate-

gies across all metrics and applications used, and especially for those with lower

mean task and input sizes (intrusion detection and indoor monitoring). They

have also demonstrated the importance of the weight α of the applications pref-

erence in minimising response time over energy, especially given the often ex-

treme heterogeneity of IoT devices. As intended, the energy-altruistic variants

of MEDICI are able to minimise the total energy cost by taking into account

the energy cost of the offloading target too, while the selfish variants minimise

the energy cost to the IoT device itself. Our evaluation has assumed that the

decision is taken locally at each IoT device. However, in a real testbed it might

25



be more realistic to have the decisions taken at the edge device. Of course this

will introduce networking overheads incurred for the IoT requests to the edge

and the collection of the utilisation data at each device required to take the

MEDICI decisions. Another assumption taken in this paper is that the infor-

mation required for making the decision is (i.e. the local queuing states and

processing times) is obtained through high priority request/response packets

between the IoT device and the edge/cloud and that we have knowledge of the

average end-to-end throughput between the devices. In a real-life situation, the

latter could be obtained by regularly probing the network. Of course these com-

munications will introduce some overheads. Additionally, aspects of the cloud,

such as its elastic properties, might also be affecting the processing times of

a task. Our next steps are to evaluate all these overheads and challenges in

different real-world implementations.

Acknowledgements

This work was supported by the H2020 project C4IIOT, under Grant Agree-

ment No 833828.

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and

challenges, IEEE Internet of Things Journal 3 (5) (2016) 637–646.

[2] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, X. Yang, A survey

on the edge computing for the internet of things, IEEE Access 6 (2018)

6900–6919.

[3] Cisco, Cisco global cloud index: Forecast and methodology, 2014–2019

(2014).

[4] W. Shi, S. Dustdar, The promise of edge computing, Computer 49 (5)

(2016) 78–81.

26



[5] S. Sultana, An experimental survey of fog computing and iot: Escalate the

cloud to where the things are, IJSRST 3 (8) (2017) 444–450.

[6] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and

computation offloading, IEEE Communications Surveys & Tutorials 19 (3)

(2017) 1628–1656.

[7] C. Meurisch, J. Gedeon, T. A. B. Nguyen, F. Kaup, M. Muhlhauser, De-

cision support for computational offloading by probing unknown services,

in: ICCCN, IEEE, 2017, pp. 1–9.

[8] E. Gelenbe, G. Sakellari, M. D’arienzo, Admission of QoS aware users in a

smart network, ACM Trans. on Autonomous and Adaptive Systems 3 (1)

(2008) 4.

[9] S. Ahn, M. Gorlatova, M. Chiang, Leveraging fog and cloud computing for

efficient computational offloading, in: URTC, IEEE, 2017, pp. 1–4.

[10] H. Shah-Mansouri, V. W. Wong, Hierarchical fog-cloud computing for iot

systems: A computation offloading game, IEEE Internet of Things Journal.

[11] X. Ma, C. Lin, H. Zhang, J. Liu, Energy-aware computation offloading of

iot sensors in cloudlet-based mobile edge computing, Sensors 18 (6) (2018)

1945.

[12] S. Vakilinia, I. Vakilinia, M. Cheriet, Green process offloading in smart

home, in: IEEE 28th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), IEEE, 2017, pp. 1–5.

[13] Y. Igarashi, M. Hiltunen, K. Joshi, R. Schlichting, An extensible home

automation architecture based on cloud offloading, in: 18th International

Conference on Network-Based Information Systems (NBiS), IEEE, 2015,

pp. 187–194.

[14] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, J. Henkel, Com-

putation offloading and resource allocation for low-power iot edge devices,

in: WF-IoT, IEEE, 2016, pp. 7–12.

27



[15] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, Y. Zhang, Se-

lective offloading in mobile edge computing for the green internet of things,

IEEE Network 32 (1) (2018) 54–60.

[16] J. Du, L. Zhao, J. Feng, X. Chu, Computation offloading and resource allo-

cation in mixed fog/cloud computing systems with min-max fairness guar-

antee, IEEE Transactions on Communications 66 (4) (2018) 1594–1608.

[17] L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective optimiza-

tion for computation offloading in fog computing, IEEE Internet of Things

Journal 5 (1) (2017) 283–294.

[18] S. Chen, Y. Zheng, K. Wang, W. Lu, Delay guaranteed energy-efficient

computation offloading for industrial iot in fog computing, in: ICC 2019-

2019 IEEE International Conference on Communications (ICC), IEEE,

2019, pp. 1–6.

[19] J. I. Benedetto, L. A. González, P. Sanabria, A. Neyem, J. Navon, Towards

a practical framework for code offloading in the internet of things, Future

Generation Computer Systems 92 (2019) 424–437.

[20] F. Jalali, T. Lynar, O. J. Smith, R. R. Kolluri, C. V. Hardgrove, N. Way-

wood, F. Suits, Dynamic edge fabric environment: Seamless and automatic

switching among resources at the edge of iot network and cloud, in: 2019

IEEE International Conference on Edge Computing (EDGE), IEEE, 2019,

pp. 77–86.

[21] M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, G. Fortino, Au-

tonomic computation offloading in mobile edge for iot applications, Future

Generation Computer Systems 90 (2019) 149–157.

[22] A. Alelaiwi, An efficient method of computation offloading in an edge cloud

platform, Journal of Parallel and Distributed Computing 127 (2019) 58–64.

[23] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: Can offloading

computation save energy?, Computer 43 (4) (2010) 51–56.

28



[24] G. Loukas, Y. Yoon, G. Sakellari, T. Vuong, R. Heartfield, Computation

offloading of a vehicles continuous intrusion detection workload for energy

efficiency and performance, SIMPAT 73 (2017) 83–94.

[25] J. Niu, W. Song, M. Atiquzzaman, Bandwidth-adaptive partitioning for

distributed execution optimization of mobile applications, Journal of Net-

work and Computer Applications 37 (2014) 334–347.

[26] F. Mehmeti, T. Spyropoulos, Is it worth to be patient? analysis and op-

timization of delayed mobile data offloading, in: INFOCOM, IEEE, 2014,

pp. 2364–2372.

[27] H. Wu, W. Knottenbelt, K. Wolter, Analysis of the energy-response time

tradeoff for mobile cloud offloading using combined metrics, in: ITC, IEEE,

2015, pp. 134–142.

[28] H. Tan, Z. Han, X.-Y. Li, F. C. Lau, Online job dispatching and scheduling

in edge-clouds, in: IEEE INFOCOM 2017-IEEE Conference on Computer

Communications, IEEE, 2017, pp. 1–9.

[29] C. Sonmez, A. Ozgovde, C. Ersoy, Edgecloudsim: An environment for per-

formance evaluation of edge computing systems, in: Second International

Conference on Fog and Mobile Edge Computing (FMEC), IEEE, 2017, pp.

39–44.

[30] T. Goyal, A. Singh, A. Agrawal, Cloudsim: simulator for cloud computing

infrastructure and modeling, Procedia Engineering 38 (4) (2012) 3566–

3572.

[31] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya, A taxonomy and survey

of energy-efficient data centers and cloud computing systems, in: Advances

in computers, Vol. 82, Elsevier, 2011, pp. 47–111.

[32] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost-and

deadline-constrained provisioning for scientific workflow ensembles in iaas

clouds, Future Generation Computer Systems 48 (2015) 1–18.

29



[33] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, P. Li, A double deep

q-learning model for energy-efficient edge scheduling, IEEE Transactions

on Services Computing.

[34] J. Lee, J. Lee, Hierarchical mobile edge computing architecture based on

context awareness, Applied Sciences 8 (7) (2018) 1160.

[35] V. Scoca, A. Aral, I. Brandic, R. De Nicola, R. B. Uriarte, Scheduling

latency-sensitive applications in edge computing., in: CLOSER, 2018, pp.

158–168.

[36] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, C. Z. Patrikakis,

A cooperative fog approach for effective workload balancing, IEEE Cloud

Computing 4 (2) (2017) 36–45.

[37] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, ifogsim: A toolkit for

modeling and simulation of resource management techniques in the internet

of things, edge and fog computing environments, Software: Practice and

Experience 47 (9) (2017) 1275–1296.

[38] E. E. Devices, Watts up pro (2009).

[39] K. Pyzyk, Anyvision, nvidia to develop surveillance cameras with facial

recognition tech (2018).

[40] M. A. Rahman, M. S. Hossain, G. Loukas, E. Hassanain, S. S. Rahman,

M. F. Alhamid, M. Guizani, Blockchain-based mobile edge computing

framework for secure therapy applications, IEEE Access.

[41] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, D. Gan, Cloud-

based cyber-physical intrusion detection for vehicles using deep learning,

Access 6 (2018) 3491–3508.

30


	Introduction
	Related work on decision making in IoT offloading
	Offloading model and multi-criteria decision support mechanism
	Processing times
	Network delays
	Response time
	Energy consumption
	The Decision Mechanism

	Performance evaluation
	Simulation environment
	Experimental setup

	Simulation results and discussion
	Conclusions and future work

