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Abstract— The modern Internet of Things (IoT)-based smart
home is a challenging environment to secure: devices change,
new vulnerabilities are discovered and often remain unpatched,
and different users interact with their devices differently and
have different cyber risk attitudes. A security breach’s impact is
not limited to cyberspace, as it can also affect or be facilitated
in physical space, for example, via voice. In this environment,
intrusion detection cannot rely solely on static models that
remain the same over time and are the same for all users.
We present MAGPIE, the first smart home intrusion detection
system that is able to autonomously adjust the decision function
of its underlying anomaly classification models to a smart home’s
changing conditions (e.g., new devices, new automation rules
and user interaction with them). The method achieves this
goal by applying a novel probabilistic cluster-based reward
mechanism to non-stationary multi-armed bandit reinforcement
learning. MAGPIE rewards the sets of hyperparameters of its
underlying isolation forest unsupervised anomaly classifiers based
on the cluster silhouette scores of their output. Experimental
evaluation in a real household shows that MAGPIE exhibits
high accuracy because of two further innovations: it takes
into account both cyber and physical sources of data; and it
detects human presence to utilise models that exhibit the highest
accuracy in each case. MAGPIE is available in open-source
format, together with its evaluation datasets, so it can benefit
from future advances in unsupervised and reinforcement learning
and be able to be enriched with further sources of data as smart
home environments and attacks evolve.

Index Terms— Intrusion detection system, cyber-physical
attacks, smart home, reinforcement learning.

I. INTRODUCTION

THE mass adoption of IoT technology in smart homes
has made them attractive targets to cyber threats, from

unlocking doors and eavesdropping on occupants through their
own cameras to hijacking voice-controlled personal assistant
devices. Commercial trends for protecting against such threats
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revolve mainly around preventive measures, such as encryption
or two-factor authentication, but the assumption that these
measures are sufficient is not well-grounded [1], as vulnera-
bilities for IoT devices are discovered and exploited routinely
despite them. In environments involving multiple devices of
varying levels of trustworthiness and likely inter-dependencies
between them, such as those found in smart homes, it makes
sense to try to detect security breaches when they occur.

Intrusion detection is not new to the IoT [2]. In fact,
several solutions have been proposed specifically for smart
city and industrial IoT environments [3], [4]. Smart homes,
however, present unique challenges with very specific require-
ments that can make generalist approaches unsuitable. They
consist of multiple commercial off-the-shelf (COTS) devices,
each often using a different network protocol, sometimes
directly connected to the household’s Wi-Fi router, other times
connected indirectly through a specialised hub, and usually
in an encrypted format. Users tend to develop their own
automation rules that virtually link otherwise unconnected
devices, including external ones, in unpredictable ways.

Furthermore, new vulnerabilities are discovered on a daily
basis, and it is unrealistic to expect a smart home intrusion
detection system to always be aware of all threats. Addition-
ally, cyber-physical attacks (i.e., cybersecurity breaches that
have adverse physical impact in the form of unauthorised,
delayed, incorrect or altogether prevented actuation, or in the
form of physical privacy breaches [5]) can affect domestic life
and a person’s behaviour and psychological state in their own
home [6]. Different users have different risk attitudes in this
context and would wish to configure differently any security
measures protecting their smart home. Finally, in most cases,
the cost of COTS smart home devices is relatively low, so any
added security provision introduced should not itself require
expensive equipment to run on.

We have addressed the above requirements by designing and
implementing MAGPIE (monitoring against cyberphysical
threats), an intrusion detection system (IDS) prototype for
smart homes subjected to a variety of cyber-physical security
threats, both known and (at the time of execution) unknown.
For a smart home IDS to be effective against unknown attacks
and in changing conditions, it must be able to adapt. We argue
that the configuration of an unsupervised classifier can be
adapted continuously via reinforcement learning as it provides
dynamic capability to continuously adapt an IDS configuration
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via conceptualisation of “actions” within a detection
adaptation process, guided by learning the relationships
between anomalous and normal cyber-physical behaviour in
the environment. The challenge here is that an unsupervised
IDS system cannot know the groundtruth (i.e., whether there
really was an attack or not); thus, reinforcement learning
cannot reward a classifier’s specific set of hyperparameter
values based on the groundtruth. However, in most attacks
on a smart home, the less confident a classifier is, the more
inaccurate it is in practice. Based on this observation, MAGPIE
applies a simple idea for the first time: the reward func-
tion of reinforcement learning on an unsupervised classifier’s
hyperparameters can be based on the classifier’s own confi-
dence in its output, as expressed through its cluster silhouette
scores. We have tested and confirmed the validity of this idea
experimentally. In addition, MAGPIE introduces three more
innovations to ensure its practicality in a household, including
taking into account users’ risk tolerance, human presence
and cyber-physical sources of data. In summary, MAGPIE
implements the following contributions:
• Ability to continuously adapt unsupervised smart

home threat detection to changing conditions. MAG-
PIE self-adapts by applying reinforcement learning on
the unsupervised classifier’s hyperparameters based on a
probabilistic reward function without an a priori model
or knowledge of the household configuration.

• Experimental evaluation with both cyber and physical
sources of data. From a threat monitoring perspective,
the physical impact of some security breaches constitutes
an opportunity because, in conjunction with traditional
cyber sources of data, it can provide valuable information
about the system’s security state.

• Self-configuration based on automated inference of
human presence. In a smart home, the models of what
is normal or not depend on human presence. For example,
a voice-activated action being triggered when a human is
present carries different significance to one triggered in
the absence of a human.

We provide MAGPIE in open-source format for installation
on a low-cost Linux computer, such as a Raspberry PI.1

II. RELATED WORK

Traditionally, the vast majority of IoT security research
applicable to current smart homes has focused on authentica-
tion and access control [7]–[9]. Lately, there has been a grow-
ing body of work tackling the challenge of detection, whether
knowledge-based (utilising signatures of known attacks) or
behaviour-based (detecting deviation from normal behaviour).

A. Knowledge-Based Smart Home IDS

Anthi et al. [10] utilised standard machine learning classi-
fiers, such as naive Bayes, to categorise IoT activity as normal
or malicious. The features used were limited to network traffic
and were similar to those used for non-IoT traffic, including

1The code and datasets used here are provided at https://github.com/isec-
greenwich/magpie

timestamp, destination IP, protocol and packet size. In [11],
the authors specifically classified which types of attacks have
occurred based on supervised learning. This information can
be very useful for triggering response mechanisms, but it is
only applicable for known attacks and requires an extensive
period of training under attack conditions (two weeks in the
cited paper), which may be impractical for a household’s smart
home network.

Brun et al. [12] focused on detecting attacks on smart
home IoT gateways. They employed a deep learning-based
approach using dense random neural networks. However,
the attacks utilised in the performance evaluation were simple
TCP SYN denial of service attacks, which were shown to
be almost as easily detectable by a simple threshold detector.
Moustafa et al. [13] started with generalist datasets for botnets
but enriched them with simulated IoT sensor data. Their
learning approach was based on an Adaboost ensemble of
decision trees, naive Bayes and artificial neural networks.
However, the approach has not been evaluated with actual
smart home devices and does not account for changes in usage
patterns over time.

Nobakht et al. [14] employed a method based on
software-defined networking technology, specifically Open-
Flow, for providing modularity in intrusion detection for smart
homes. Their experimental evaluation however was on a single
light bulb, and the technique itself was based on known
signatures of attacks, which limited its wider potential for large
smart home setups or previously unseen attacks.

Trimananda et al. [20] addressed the specific challenge of
information inference attacks in smart homes. Their tool is
able to automatically extract packet-level signatures for device
events based only on packet lengths and durations to predict
which device is activated. Although very useful in anomaly
detection, this approach has not yet been employed in this
fashion. Additionally, it is naturally limited to attacks related
to the unauthorised activation of devices.

B. Behaviour-Based Smart Home IDS

Wan et al. [21] introduced IoTArgos, which in addition
to supervised classification of the data communications of
different smart home devices, has a “second stage” of detection
using unsupervised learning for unknown attacks. This is a
meaningful direction and has been evaluated on a wide range
of COTS smart home devices. However, the cost of the two
detection stages has not been evaluated, and the method does
not take into account the presence of the user or the smart
home’s changing conditions.

A very interesting idea was developed in EclipseIoT [22],
which in addition to authentication and access control, features
an early detection provision based on canary files. These are
forged files with enticing names (e.g., “SmartLock.py”) placed
amongst genuine ones. Modification of a canary file is an
indication of unauthorised access.

Procopiou et al. [15] proposed a lightweight algorithm
based on forecasting and chaos theory to identify flooding
and DDoS attacks launched by compromised smart home
devices. For every time-series behaviour collected, a forecast is
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TABLE I

LIMITATIONS IN EXISTING INTRUSION DETECTION RESEARCH FOR IOT AND SMART HOMES VS. MAGPIE

Fig. 1. The MAGPIE architecture.

generated, and the error of the forecast against the actual value
is assessed by the Lyapunov exponent to determine if an attack
has occurred. The evaluation conducted in NS-3 simulation
involved low-rate and flooding attacks, but the method has
not been extended beyond availability threats.

Novák et al. [16] proposed an intrusion detection technique
that focuses on identifying unusually short and unusually long
activities based on self-organising maps. While the approach
of taking into account the length of activities proved to be
useful, it is not sufficient by itself and can lead to considerable
false positives.

Ramapatruni et al. [17] employed a hidden Markov
model-based approach that learns what is normal in a smart
home. In terms of context, if the user is recognised as being
out (based on their mobile device’s Wi-Fi connectivity), then
any activity related to doors will result in an abnormal state.
A strength of this work is that it can take into account the
traffic generated by several diverse sensors, but it has been
evaluated only in simulations in the form of artificial state
changes.

Yamauchi et al. [23] expanded consideration of the user by
modelling user behaviour as a sequence of events, including
the operation of IoT devices and other behaviour monitored
by sensors. Their method learns sequences of events for a
predefined set of conditions and detects attacks by comparing
the sequences of events, including the current operation, with
the learned sequences. This work was extended in [18] and
compared with a technique based on a hidden Markov model.
It was tested on four users using smart home devices, but in a
laboratory setting. Naturally, any legitimate behaviour that had

not been previously observed would erroneously be flagged as
anomalous.

C. Critique of Related Work

We observe that there is a wide variety of machine learning
classifiers utilised in the literature, but there has been no
emphasis on allowing configuration of intrusion detection
beyond the design stage or based on the user’s preferences.
In addition, existing smart home IDSs have largely ignored
the fact that cyber attacks in smart homes have an observable
physical impact, which can be useful in detection. Finally, with
the exception of [23], human presence has not been taken into
account in smart home IDS research, although normal IoT
device and network activity differ when the users are at home
versus when they are not. In Table I, we provide an overview
of the existing literature on intrusion detection approaches and
MAGPIE, and in the following sections, we present, in detail,
how MAGPIE addresses all four limitations.

III. MAGPIE DESIGN

Figure 1 summarises the MAGPIE architecture. Its collec-
tion phase captures and decodes the data coming from cyber
(computation, communication) or physical feeds (e.g., audio,
signal strength). It can dynamically activate or deactivate
interfaces and decode the corresponding raw feeds, such as
sensor readings or network datagrams.

Smart homes generate large volumes of usually encrypted
data [24] that may differ considerably between different envi-
ronments. In the transcription phase, MAGPIE considers only
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TABLE II

DATASTREAM SAMPLE INTER-ARRIVAL TIME IN SECONDS WITH NO
SMART HOME OCCUPANT PRESENT (5-min CAPTURE)

Fig. 2. Parsing datastreams with variable inter-arrival rate.

meta-data that are consistent across different smart homes.
We argue that alternative approaches, such as authenticated
and encrypted device API queries or passive interception
of content with decryption keys, would render the defence
mechanism a single point of failure and a target for attack.
Moreover, by reading only smart home network communica-
tion flow meta-data, MAGPIE is better positioned to preserve
privacy. MAGPIE extracts meta-data streams (MDS) based
on specific interface datastream parsing logic (e.g., com-
munication/application/sensor protocol) (Figure 2). Rolling
window-based parser extraction and buffering allow appropri-
ate performance and volume of data samples for processing.
After aggregating, statistical information on the extracted
meta-data features, such as the mean, standard deviation, min
and max of sample frequency, content/message type, size,
length, delay and flow direction, is considered. We define the
delay meta-data feature as the inter-arrival rate in millisec-
onds between packets/frames for the same source-destination
message type pairs.

Table II shows the volume and inter-arrival rate for samples
collected in a 5-min window in our smart home testbed
during periods of relatively low occupant activity with an
aggregate average sample inter-arrival rate of 0.49 s and
average sample volume of 3456, with extremes of under 1 ns
between input samples in some cases. On the basis of these
observations, it is clear that analysis on datastream samples
in real time, without windowing and buffering, is impractical
on a resource-constrained platform. Moreover, it may prove
impractical to offload such volumes of data due to file size,
upstream network bandwidth saturation and throttling [25].

As part of windowing, a synchronised “end of window”
datastream buffer is the stage where a parsing instance should
initiate feature extraction, interpolation, discretisation and gen-
eration of statistical data (Figure 2). The datastream window in

the buffer is then forwarded to a parsing logic and interpolation
phase, where meta-data extraction and feature interpolation
are performed on raw datastreams and are enumerated with
protocol mapping identifiers (e.g., addressing, data type). The
output is the MDS window feed, which is forwarded for
storage to the MDS datastore to fuse data points across all
MDS datastreams into an aggregated sample (aMDS). The
datastore serves as a data historian for anomaly detection
training (e.g., concept discovery) and captures snapshots of
MDS data samples used in reinforcement learning-based adap-
tation (Section III-A). The aMDS fusion extracts common
statistical features across all MDS feeds, which are later used
to train a presence inference function within the smart home.
The aMDS dataset combines common features across MDS
feeds to generate a single feature-vector sample per window
t for presence inference (whilst each MDS can have different
sample rates for t) by omitting source-destination address and
message type pairs for network data sources and compressing
some physical MDS input. The average, mode, cumulative sum
and standard deviation metrics are obtained for each feature
extracted across each MDS feed.

The real-time threat monitoring latency is the window
buffering latency plus the reasoning engine’s prediction
latency. All received MDS feeds are processed, interpolated,
normalised and scaled in real time during each monitoring
window interval. This process provides the required feature
structures for concept discovery training data to learn “normal”
behaviour and generate an independent anomaly detection
model for each interface. Note that the complexity of the
MAGPIE transcription phase is variable based on the cyber
or physical data source, the sample rate and whether the data
source is connection-oriented. For example, for network data
sources (IP, WiFi, ZigBee), the computational complexity of
the end-to-end parsing logic and interpolation is O(nδ), where
n is the number of samples (or data set size) per window t
and δ represents the computation of distinct source-destination
pairs by connection address, port and message type. For
physical data sources (RF and Audio), the computational com-
plexity is O(n). For training, the individual linear time com-
plexity for each isolation forest model is O(ζψ logψ) [26].
During real-time detection, the computational complexity of
each isolation forest model is O(nζ logψ). From a technical
implementation perspective, MAGPIE’s processing efficiency
is achieved by running parallel transcription processes for each
data source and anomaly model. During the course of testing
on a Raspberry Pi3, on average, the transcription phase did
not exceed 1 s for each monitoring window t or 2.5 s for
the end-to-end processing phases (collection, transcription and
reasoning) at peak loads across five data sources.

A. Reasoning

MAGPIE employs (i) real-time unsupervised anomaly
detection, (ii) adaptation based on reinforcement learning,
and (iii) model selection based on human presence inference.

1) Unsupervised Anomaly Detection: The first building
block of MAGPIE’s reasoning is the real-time detection of
anomalies on individual interfaces. Here, supervised machine
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learning techniques are impractical because attack dataset
labelling is unlikely to apply across households with different
system configurations and different automation rules defined
by their users. Let us consider the general case of an MDS
feed k ∈ [1, K ] monitored during time window t .

During that time window, M samples are collected, A of
which are classified by an anomaly detection process as abnor-
mal and N of which are classified as normal, for example,
based on an isolation forest [26] classifier, one-class support
vector machines [27] or support vector data description [28].
We denote by At (resp. Nt ) the number of abnormal (resp.
normal), according to MAGPIE, samples investigated during
time window t . Therefore, regardless of the choice of anomaly
classifier used, for each MDS feed k in window t , we denote
by Ak,t (resp. Nk,t ) the number of anomalous (resp. normal)
samples found in feed k during time t . We then define the
anomaly ratio pk,t as pk,t = At

At+Nt
.

Extending this approach across all feeds, we derive an
aggregate anomaly score at for time window t . We have
chosen

at =
(∑K

k=1 pq
k,t∑K

k=1 pk,t

) 1
q−1

(1)

This transformation is required because different data
sources can exhibit highly variable behaviour, and a single
source’s anomaly score is not a reliable means for determining
an attack state. As described in [29], a simple approach, such
as a weighted sum, cannot deliver reliable results because indi-
vidual anomaly scores are typically contradictory. Therefore,
we use the aggregate anomaly score at to address skewness.
As square roots are commonly used for left skewness while
cube roots are used for right skewness, the introduction of
q allows for flexibility in the transformation. In practice,
the control parameter q configures a higher, lower or balanced
anomaly score bias across the ensemble. Favouring higher or
lower scoring bias, however, can have an adverse effect on
the anomaly score threshold θ defined by the smart home
occupants for when to report a suspected attack. For exam-
ple, in Figure 3, we demonstrate how an ensemble of five
data sources, as in our experiments, can affect the detection
accuracy if the user has defined a specific θ when q is too
low or too high. For the top graph in Figure 3, for each
aggregate score at (where all models are equal to the same
pt , or one model pt > 0 with all other models pt = 0),
we show that depending on the user’s defined θ , the value of q
results in higher false positives or false negatives. For balanced
accuracy, in this case, q = 3 is an optimal configuration for
an ensemble of five anomaly models. In the bottom graph
in Figure 3, we provide three general cases with variable
anomaly model ratio scores pt . If an occupant defines θ = 0.3
as their attack threshold, then q = 2 would result in more false
positives, while q = 5 would result in more false negatives.
Thus, a middle-ground q parameter is preferable (again, in this
example with five models, q = 3). Consequently, q must be
increased or decreased as the number of data sources changes
(where a minimum of two data sources, e.g., cyber + physical,
is assumed and K ≥ 2). In our experiments, we found that a

Fig. 3. q parameter anomaly score bias example.

middle-ground value, i.e., q = ⌈ K
2

⌉
, is appropriate and can be

set automatically.
As pk,t ∈ [0, 1], this conveniently ensures that at ∈ [0, 1].

Thus, according to (1), the higher the q ∈ [2, inf] is, the more
important one abnormal feed is to the overall anomaly score.
As discussed, we have found experimentally that q = 3
provides a good balance between ensuring that the overall
score does not unduly fluctuate between excessively high
values caused by small numbers of anomalous MDS feeds
(e.g., one cyber and one physical interface) or excessively low
values caused by large numbers of normal MDS feeds (e.g., ten
cyber/physical interfaces). Thus, for simplicity, equation (1)

becomes at =
√∑K

k=1 p3
kt∑K

k=1 pkt
.

Finally, the anomaly score is interpreted as an overall
monitoring state St for the smart home, abnormal (if at > θ )
or normal (if at < θ ), based on an anomaly score threshold
θ ∈ [0, 1], which is selected by the occupants.

In practice, θ is a threshold that represents the risk profile
of the household. For example, a very high value, such as
θ = 0.9, would mean that the household would not want
to be warned unless there are multiple strong indications of
anomalies (risk-seeking profile). Intuitively, this is a household
that would prefer to minimise false positives at the expense
of a greater number of false negatives. In MAGPIE, a global
θ threshold represents a single configuration parameter that
occupants configure for attack detection. While model-specific
θ definitions would increase the flexibility and control for the
user, it would also increase the configuration complexity. First,
users would require technical expertise to determine which θ to
use for each data source, as it is unrealistic to assume a priori
knowledge on the mapping between which θ values would bias
one source over another. Furthermore, considering a preference
for cyber or physical attack detection in cyber-physical IDS,
it may be ineffective to define specific θ values that bias one
cyber or physical source over another, specifically because
attacks against either may be initiated via cyber or physical
space [5]. By comparison, a global θ definition specifies a
required threshold for an aggregate anomaly alert to be con-
sidered significant enough to be a substantive attack, regardless
of whether the attack source is cyber or physical.

Further, to improve the processing of MDS samples as
timeseries data, a sliding window of MDS samples is defined
per MDS feed. The sliding window enables the anomaly

Authorized licensed use limited to: University of Greenwich. Downloaded on January 27,2022 at 11:42:43 UTC from IEEE Xplore.  Restrictions apply. 



HEARTFIELD et al.: SELF-CONFIGURABLE CYBER-PHYSICAL INTRUSION DETECTION FOR SMART HOMES 1725

score ratio calculation to take into account a previous window
(or windows) of MDS activity.

2) Adaptation Based on Reinforcement Learning: A newly
installed smart home’s dataset is typically free from conta-
mination. After some time, however, the MDS datastore is
likely to contain adversarial data samples from historic attacks
or compromised devices. Therefore, it is important to adapt
the learning process to cope with adversarial datapoints. This
requirement is addressed naturally in certain unsupervised
learning approaches through the application of contamination
hyperparameters that adjust the decision threshold used for
anomaly detection. Furthermore, what is considered normal in
a household can change continuously as devices are added,
removed or updated and as people add or remove automation
rules or simply change how they use the devices. Therefore,
changes in the datastream distribution require continuous adap-
tation of the anomaly detection threshold. Concept discovery
is unique for each smart home, even for households with
identical smart home configurations, because the network,
sensor and actuation activity depends on the human fac-
tor [30]. Therefore, an unsupervised anomaly detection model
developed for one smart home is not portable to another.
As it is generally infeasible to obtain a priori knowledge
of the correct contamination level, we propose the use of
reinforcement learning to continuously update the anomaly
classifier’s hyperparameters.

The reinforcement learning mechanism in MAGPIE recur-
sively explores and exploits detection reward feedback across
different anomaly classifier configurations, where a single
action-state (i.e., the anomaly classifier hyperparameter con-
figuration) is selected during each step. The process treats the
continuous capture and analysis of each MDS snapshot as
an adversarial multi-armed bandit (MAB) environment [31],
[32] because the composition of an individual dataset snapshot
collected and analysed by MAGPIE (e.g., in terms of volume
and data points) is continuously changing during real-time
operation. This approach enables the anomaly detection to
adapt to previously unseen data and to identify legitimate
changes that occur in the environment that are expected to
stabilise over time, whereas attack anomalies remain distinct
because of their sparse occurrences.

For each MAB iteration, we define a probabilistic reward
feedback based on the cluster silhouette scores of the anomaly
detection results generated for each analysed dataset snapshot.
In practice, the reinforcement learning process rewards the
action-states (e.g., bandit arms) that reduce uncertainty in its
own decision. Below, we describe the bandit environment,
action-state parameters and reward generation algorithm:

[Bandit environment]: Defined as an adversarial bandit
[33], where for each MAB action-state parameter iteration 1 to
N (where N is the step horizon for a bandit episode), MDS
data snapshot i ∈ [J ] is selected at random, and [J ] is the set
containing all current MDS feed datastore snapshots.

[Action-state parameter]: The bandit arms are defined by
the anomaly model contamination hyperparameter χ , which
corresponds to the proportion of outliers in snapshot i used
for anomaly modelling. The χ hyperparameter controls the
anomaly detection decision threshold based on the anomaly

Algorithm 1: Algorithm for IDS RL Reward
Input : Anomaly scores produced by χ for each

window in dataset i (at,χ )
Output: MAB reward value Rχ,i

1 Function MABReward:
2 for t ∈ [1, T ] do
3 Aχ ← at,χ ;
4 end
5 k = 2 ;
6 Cχ = KMeans(Aχ , k) ;
7 Rχ,i = Silhouette(Cχ ) ;
8 return Rχ,i ;
9 End Function

detection classifier. For example, for our MAGPIE implemen-
tation, χ controls the decision threshold of an isolation forest
classifier based on the decision function described in [26].

[MAB reward generation algorithm 1)]: The reward logic
is as follows: for a given window t ∈ [1, T ], each MAB iter-
ation corresponds to a given action-state (i.e., contamination
hyperparameter) χ . We define at,χ as the anomaly score value
of time window t for a contamination hyperparameter χ , and
we denote �aχ as the vector of all anomaly scores for χ for all
the different time windows t .

Next, using K-means clustering with the Euclidean distance,
we generate two clusters that contain higher and lower anom-
aly scores. We define the reward value Rχ,i for snapshot i as
the silhouette score from the dataset clusters that represents a
measure of cluster similarity.

Figure 4 shows a high-level illustration of the reinforcement
learning role. During real-time operation, 1) the current anom-
aly model’s configured detection threshold classifies MDS
samples during each monitoring window t . Depending on
either the number of samples collected or the time delta
between collection periods, 2) MDS sample snapshots (e.g.,
M samples across K feeds) are sent to a “MAB RL” function
to determine anomaly model hyperparameter χ based on
the newly updated data sample of recent and historic MDS
samples. Once the updated MDS samples are processed by the
“MAB RL” function, 3) the model configuration computed by
the RL process is issued as an updated model configuration
(χ) for real-time anomaly detection. This process enables the
anomaly model configuration to adapt its detection threshold
via the RL process to respond to changes in the MDS data
sample distribution and to discover previously unidentified
threats.

Figure 5 shows the reinforcement learning process.
• Real-time detection. During each detection window t ,

following collection and transcription processing (1.1),
the presence inference layer classifies the aMDS sample
to determine the presence inference state (1.2) and then
selects the most appropriate anomaly detection model
to use for each subsequent MDS sample forwarded in
the window (1.3). The user’s risk threshold θ is used
to compute the window’s aggregated anomaly score by
means of formula (1).
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Fig. 4. MAGPIE’s reinforcement learning for threat detection re-configuration.

Fig. 5. MAGPIE Reasoning Engine overview.

• Continuous RL adaptation. Once the sample input
threshold (which is defined by the sample data size or
time delta) is met, the received MDS samples are stored
as a snapshot consisting of n windows in the MDS
datastore set [J ] (2.1). MDS samples are selected at
random during each MAB arm iteration. During each
trial (2.2), each MDS model is trained with contamination
hyperparameter χ (i.e., the MAB action-state parameter),
with the MDS dataset excluding the randomly selected
MDS snapshot i (i.e., the non-stationary bandit envi-
ronment). Snapshot i is then used as test data for the
trained anomaly model, producing an array of anomaly
scores for each window in the snapshot, where the reward
Rχ,i is computed by the reward Algorithm 1. Once the
number of predefined RL trials has been reached, the χ

hyperparameter “tuned” model is selected for use in the
real-time anomaly detection process. The RL process is
re-initiated once a new snapshot is stored.

To estimate the reliability of MAGPIE’s reward mechanism,
in section V, we experimentally evaluate two popular MAB
algorithms that are commonly applied in non-stationary and
adversarial bandit problems against a random selection method
and compare their the cumulative average regret, cumulative
average reward and average regret. We then proceed to estab-
lish the quality of the arm (χ) selection for the optimal bandit
method using a fixed step horizon and evaluate the selection by
generating an AUC-ROC model score for the corresponding
isolation forest anomaly classifier configurations.

Monitor state and source detection - The state and source
variables are intended to inform the household of whether the
smart home is subject to anomalous behaviour after computing
the detection score (e.g., under attack), as well as the MDS
feeds with the highest anomaly score, which is indicative of
the utilised attack vector (e.g., IP network, Zigbee network).

3) Human Presence Inference: Certain smart home system
activity is observed irrespective of occupant presence. For
example, a voice-controlled home assistant sends a continuous
keep alive IP packet to the cloud regardless of whether
occupants are using it. Other cases of system activity would be
unusual if no human is present. For example, consider the case
where network traffic from a ZigBee motion sensor increases
dramatically or a voice command is activated even though no
one is home. Therefore, it may make sense to train different
machine learning models for the two cases of presence and no
presence. Human presence inference can be based on a simple
manual process, where occupants set it manually when they go
to sleep or leave home, or it can be performed automatically
before anomaly detection to select the machine learning model
that corresponds to the presence state identified.

IV. PROTOTYPE IMPLEMENTATION AND SETUP

We have evaluated our prototype implementation by inte-
grating it within the smart home of a real household with
three members. Figure 6 shows the layout of the devices,
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Fig. 6. Smart home testbed for MAGPIE prototype experiments.

which are described in Table IV, referenced by number ID
in Figure 6, and accompanied by the smart home automa-
tion rules specified by the household, which are summarised
in Table V. The setup includes a common home Internet router
(2) with a WiFi LAN for WiFi-enabled devices (3-7, 13) and
a ZigBee gateway (8) for Zigbee devices (9-12) connected to
the home router via Ethernet. Remote connectivity to WiFi and
ZigBee devices is facilitated by respective cloud services via
the Internet. MAGPIE (1) collects all local and Internet traffic
traversing the home router via an Ethernet SPAN port. Its WiFi
and ZigBee interfaces passively monitor WiFi and Zigbee
network frames on their configured RF channels. The software
defined radio (SDR) interface captures spectrum readings in
the respective WiFi and ZigBee 2.4 GHz ranges. MAGPIE’s
microphone is directly connected via USB. An adversary
within wireless range of the smart home can execute ZigBee
and WiFi attacks using an attack laptop, SDR peripherals and
ZigBee antennas with customised firmware. The adversary can
also target the smart home remotely via compromised cloud
services or via command and control of compromised devices.
See Table IX for a list and descriptions of the attacks.

Figure 7 presents the MAGPIE prototype’s technical
schematic. Each MAGPIE interface (1: Ethernet, 2: ZigBee
antenna, 3: WiFi antenna, 4. Microphone, 5: SDR RF scanner)
has individual data collection and parser processes managed
by a window synchronisation daemon to forward all MDS
datastreams to a message queue (ZMQ publisher) based on a
defined time window. The ZMQ message queue forwards each
MDS datastream to a datastore. Then, MDS pre-processing
subscribers pull each MDS datastream from the ZMQ message
queue, preprocess and forward the prepared MDS feature
vectors to each respective MDS Isolation Forest model for
anomaly detection and aggregated threat detection output.
In parallel, the aMDS feed is forwarded to the random forest
presence classifier for presence model selection. MAB RL
adapted isolation forest models are trained, stored in the
datastore and then loaded into the anomaly model selection
and detection process after every MAB RL iteration.

The behaviour of occupants in the testbed and their inter-
actions with the smart home devices and automation rules
was allowed to occur naturally, with the addition of some

TABLE III

LIVE CAPTURE SAMPLE DATASET STATISTICS

requested actions to ensure that all automation rules or devices
were activated during data collection. Training data collection
was conducted intermittently during a 1-month period. The
locations of the MAGPIE prototype and IoT devices remained
static, with the exception of the mobile and tablet devices,
which moved with the occupants using them. In total, there
were 45 normal data collection runs with an average length
of 713.7 s each and 70 attack data collection runs with
an average length of 31.5 s each. In Table III, we provide
summary statistics related to the datasets collected during the
1-month experiment.

A. Cyber-Physical Meta-Data Features in the Smart Home

In Table VI, we present each of the cyber-physical MDS
feeds and the corresponding features collected. Further sta-
tistical flow information, such as sample frequency, average
and standard deviation metrics, are added during parsing.
We utilise tshark’s display filter at run-time for standard input
into the MDS parser, applying only regex operations to input
data. Note that for physical data sources such as audio and
radio frequency spectrum, we utilise custom (a python applica-
tion) and open-source libraries (rx_power from rx_tools [34])
for feature collection. On the testbed, we apply the following
constraints based on observation:
• WiFi data frames are redundant and ignored as they

provide the network footprint, which is already monitored
in encapsulated IP packets. WiFi “Request/Clear to Send”
control frames are ignored as these are mainly used
to avoid hidden-node collisions. Therefore, only WiFi
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TABLE IV

SMART HOME TESTBED DEVICES AND NETWORK CONNECTIVITY

TABLE V

SMART HOME TESTBED AUTOMATION INTEGRATION AND RULES

TABLE VI

MAGPIE PROTOTYPE DATA FEEDS AND META-DATA

STREAM (MDS) FEATURES

management frames, which can be exploited to disrupt
or infiltrate a WiFi network, are monitored.

• ZigBee sensors and actuators, with the exception of
coordinator nodes (e.g., gateways), use dynamic net-
work addressing. Therefore, all non-coordinator nodes are
addressed using the same numerical value. This does not
impact the ability to model anomalous ZigBee patterns as
sensor and actuators generate a fairly predictable network
footprint.

• Radio frequency spectrum analysis covers the 2.4 GHz
frequency band for 802.11G and ZigBee, which can also
include Bluetooth and other 802.15.4 wireless protocols.

1) Risk-Based Unsupervised Threat Monitoring With Rein-
forcement Learning Adaptation:
• Isolation forest anomaly detection. We have opted

to implement unsupervised anomaly detection using the
isolation forest algorithm in Python with the Scikit Learn
library [35]. It performs anomaly detection by isolating
sample data points through random feature selection and

value splitting, selecting a random value between the
maximum and minimum bounds of a data sample feature.
No prior assumptions are made regarding the distribution
of feature values. Therefore, randomised feature splitting
is effective for hybrid feature-sets of both continuous and
categorical data, as is the case with MDS feeds. The
recursive feature partitioning represents a tree structure,
whereby the number of times a feature is split to isolate
a sample follows a traditional tree path length from the
root to a terminating node. The average tree path length
represents the decision function used to classify observa-
tions as normal or anomalous [26]. For each MDS feed
generated, an independent feed-specific isolation forest
model is created. Together, the forests form an ensemble
of models used to produce an aggregate anomaly score
during each monitoring window.

• Adversarial multi-armed bandit reinforcement learn-
ing. MAGPIE models threat detection adaptation in a
smart home as an adversarial bandit environment based
on the premise that what is normal behaviour (e.g.,
devices, network traffic, user interaction) may frequently
change in a smart home. Therefore, MAGPIE trains its
RL-based anomaly classifiers on a continuously changing
series of collected dataset snapshots. At each time step,
for each arm pull (i.e., isolation forest χ hyperparameter
selection), the smart home bandit chooses at random a
dataset to test. Therefore, on the basis of algorithm 1,
the distribution of reward Rχ,i for each action state arm
is drawn from an i.i.d. distribution based on randomly
selected MDS dataset snapshots. In this case, as each
arm’s reward distribution changes at random in the adver-
sarial bandit environment, the EXP3 (exponential-weight
algorithm for exploration and exploitation [33], [36])
algorithm is a natural and suitable choice to establish
the optimal χ configuration for the isolation forest. For
comparison against EXP3, we also select a non-stationary
sliding-window based UCB (upper-confidence bound)
algorithm [37], where the reward policy is weighted
according to a constant step size used to update the
reward estimate (we defined a step size of 0.1, which
moves the agents estimate 10% closer to the most
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Fig. 7. MAGPIE prototype technical schematic.

TABLE VII

EXP3 AND NON-STATIONARY UCB1 MAB PARAMETERS

recent observed reward). UCB is a popular choice for
traditional stationary MAB reinforcement learning prob-
lems, achieving logarithmic regret for the number of
actions/arm pulls (in this case, χ parameters) selected
over time [38], where regret refers to the expected
decrease in reward gained during execution of the learn-
ing algorithm instead of acting optimally [39]. In other
words, the regret is the difference between the reward
of a given policy (i.e., the learning algorithm) and that
of the optimal static policy in hindsight. In this case,
to adjust to stochastic, non-stationary bandit behaviour,
a discounting factor (λ) based on a step-size sliding
window is applied to a UCB1 policy reward estimate. The
EXP3 and non-stationary UCB1 implementations were
adapted from the bandit algorithms developed in [40]
and [41], respectively. In Table VII, we summarise the
configuration parameters for the EXP3 and non-stationary
UCB1 algorithms.

2) Human Presence Inference: In our implementation,
the presence of people is detected with a supervised random
forest (RF) classifier using ground-truth labels defined by the
user, as RF is commonly used for lightweight machine learning
in the IoT [42]. Other lightweight supervised machine learning
classifiers are similarly useful. Labelling of aMDS data sam-
ples (user presence (1)/no user presence (0)) is pre-configured
for the initial training of the prototype during the start-up
learning phase. Subsequent training requires users to actively
inform MAGPIE of the time periods in which they are actively
present in the household (unsupervised presence inference is
outside the scope of the prototype development). We define a
simplified household environment for presence inference based
on whether occupants are actively or passively interacting with
the smart home network. By observing the behaviour of a
sub-sample of collected aMDS data points (Figure 8), we see

TABLE VIII

MAGPIE PROTOTYPE Reasoning Engine MODEL

CONFIGURATION PARAMETERS

a distinguishable impact of presence and no presence for most
datastreams. However, aside from other physical sources, basic
sound measurements as a feature may be problematic in the
face of an audio injection attack. We evaluate this impact
on automated presence inference in section V-A, where we
also assess overall detection results, showing that presence
inference helps increase accuracy.

B. Smart Home Cyber-Physical Attack Vectors

We have subjected our testbed to attacks targeting WiFi,
ZigBee and voice-enabled home assistant communication tech-
nologies, as well as corresponding smart home device control
software and third-party apps, all of which are commonly
deployed within today’s smart home environments. WiFi is
currently the primary connectivity medium in most smart
homes, not only for device-to-device communication but also
as a network gateway to the cloud services on which most
smart home devices rely. ZigBee is a low-powered wire-
less medium that provides energy-efficient connectivity for
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Fig. 8. Aggregated MDS (aMDS) behaviour during “No presence” (orange dashed line) and “Presence” (blue line) states.

TABLE IX

EXPERIMENT ATTACK VECTORS WITH CYBER-PHYSICAL IMPACT CLASSIFICATION [6] IN THE SMART HOME

low-resource devices that connect to more capable control
gateways (e.g., ZigBee hub with Ethernet or WiFi backhaul).
However, it has limited bandwidth for data communication
(250 kbit/s per channel in the 2.4 GHz band used in the
testbed). Security-wise, the speaker-microphone pair of a
voice-enabled home assistant is typically an unmonitored
communication link, which has been shown to be vulnerable
to exploitation [44]. Smart home devices such as security
cameras offer physical monitoring protection of the household;
however, recent high-profile compromises of these types of
systems have demonstrated how their exploitation can lead to
significant breaches of the physical privacy of occupants and,
in some cases, impact their emotional well-being [6].

In Table IX, we describe the attack vectors and their
cyber-physical impact based on [5]. All attacks were executed

in both the presence and no presence conditions. Note
that localised attack vectors (namely, WiFi deauth (A1),
Evil twin (A2), ZigBee jamming (A3) and Node amplifica-
tion (A4)) could also be launched remotely if a target device
were compromised through third-party apps, cloud-based con-
trol software, or compromised software and hardware supply
chains [6]. For example, both home assistants and smart
lightbulbs provide the ability to host their own WiFi access
point, whilst ZigBee devices are capable of reconfiguring
themselves as ZigBee network coordinators.

C. Experimental Scenario, Settings and Parameters

Our experimental process consisted of three phases. Phase 1
was related to (i) live sample data collection of smart home
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TABLE X

SUMMARY OF OCCUPANT DEVICE AND NETWORK
INTERACTION IN THE SMART HOME TESTBED

behaviour (in terms of the data sources monitored) when not
under attack and (ii) execution of each attack vector. This
phase comprised two different types of experiments: one where
users were present during data collection and another where
no users were present in the household. Phase 2 was related to
the adaptation of the offline reinforcement learning anomaly
detection. Phase 3 was related to live monitoring of attack
detection using the RL-optimised MAGPIE configuration.

Table III provides statistics about the live capture sample
dataset for normal and attack execution experiments. Some
attack vectors (WiFi de-authentication and ZigBee jamming)
were observed to have a persistent effect on specific device
behaviour, such as total connectivity loss to the WiFi network
or disconnection of ZigBee nodes from the PAN, even after
the attack had stopped. To ensure that persistent symptoms of
one experiment did not interfere with another, after each attack
execution, we reconnected affected devices and nodes to their
respective networks and tested the automation rules to ensure
that the smart home had returned to a known good state. For
phase 1, each attack vector was executed independently so
that normal and attack data samples were equally distributed
with respect to the amount of time the smart home was
monitored by MAGPIE under normal conditions and during
attack execution. This process ensured that the captured dataset
had a balanced set of normal and attack samples for testing.
All live sample collection experiments were conducted on the
training data for phase 2 reinforcement learning adaptation of
the MAPGIE’s anomaly models, whereas phase 3 consisted of
executing live attack vectors against the MAGPIE prototype in
a real-time monitoring state with the optimised anomaly model
configuration. During the experiment, the users interacted with
the smart home according to their normal routine. This activity
generated a dataset that represented natural smart home user
behaviour. Table X shows the different types of interactions
performed by the users.

V. EXPERIMENTAL RESULTS

The MAGPIE prototype’s performance is evaluated in terms
of the i) attack detection accuracy with reinforcement learning
χ adaptation Vs. random χ configuration, and the effect on
performance with and without cyber-physical sources of data;
ii) accurate detection of presence in the smart home and its
effect on threat detection performance for dynamic anomaly
model selection; iii) attack detection latency, which refers to
the time delay before the prototype system correctly identify
an attack, taking into account correct interface source detec-
tion; and iv) end-to-end monitoring latency, which measures

the processing delay for each of the MAGPIE prototype’s
transcription and analysis phases to complete, according to
the prescribed collection window interval.

For each measure of detection performance, we employ
timestamp window labelling to indicate whether a predicted
data sample’s label belongs to an attack window or a
non-attack window. In terms of accuracy, the Jaccard similarity
coefficient is used as a measure of prediction performance to
compare a set of predicted data sample labels to a correspond-
ing set of ground truth labels.

A. (Contribution 1) Ability to Recognise New Smart Home
Threats by Continuous Adaptation to Changing Conditions

At its inception, a newly installed smart home can be
safely assumed to be free from attacks. Therefore, a low
anomaly detection sensitivity (e.g., χ - contamination value
for isolation forest anomaly decision function) is a sensible
choice for system initialisation. However, over time, the level
of data contamination supporting this condition will drift due
to changes in the smart home configuration or actual attacks
(which may be undetectable at the time of occurrence due to
the current detection sensitivity). The same applies to selecting
the anomaly detection sensitivity for an existing smart home.

In Figures 11 and 10, the experimental results of the
RL training show that EXP3 achieved the lowest average
cumulative regret and highest average cumulative reward
compared to a non-stationary UCB strategy, whereas both
EXP3 and UCB comfortably outperformed a naive random
arm selection strategy. In terms of cumulative reward, initially,
minor increases in observed reward occur due to the relatively
small distribution range between rewards (see Figure 10). The
effect on performance for both EXP3 and UCB therefore
indicates that a sufficiently large step horizon is required
to reach an optimal and reliable arm selection state, as per
the objectives of the MAGPIE MAB RL process. Following
our experimental comparison of MAB algorithms, EXP3 was
selected as the optimal bandit algorithm for solving the
anomaly classifier detection adaptation objective in MAGPIE.
Following a fixed-step horizon selection policy, in Figure 12,
EXP3 reported optimal arm weights χ=0.01 (ARM 4) and
χ=0.005 (ARM 3) for the presence and non-presence anomaly
classifier configurations, respectively. To analyse the quality
of the EXP3 selected χ configuration parameters, we derived
AUC-ROC curves for models trained with each specific χ
parameter in Figure 13. The results show that for overall
model detection accuracy, when applying the θ threshold
across all attacks we evaluated, EXP3 selected the optimal χ
parameter for the presence and no-presence anomaly models.
In terms of overall AUC, the selected arms were ranked
first (AUC=0.90) and third (AUC=0.88) for the presence and
no-presence models, respectively.

In summary, the results presented in Table XI demonstrate
that the combination of EXP3 with our probabilistic reward
algorithm is a reliable mechanism for optimising detection
performance. Figure 9 shows RL optimised the unsupervised
detection accuracy for each θ when tested against the attack
vector in our testbed.
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Fig. 9. Risk-based RL-optimised anomaly detection accuracy [%] (Presence = Orange, No Presence = Blue, MAB Arm 3: χ = 0.005, MAB Arm 4:
χ = 0.01).

Fig. 10. Average cumulative χ selection regret for random (blue),
non-stationary UCB (orange dash), and EXP3 (green points) MAB algorithms
over a 6000 step horizon across 3 runs.

Fig. 11. Cumulative χ selection reward and regret for random (blue),
non-stationary UCB (orange) and EXP3 (green) MAB algorithms over a
6000 step horizon across 3 runs.

Fig. 12. EXP3 weights for bandit arms (χ ) over a 6000 step horizon.

Analysis of the presence datasets (orange radar) shows
poor detection accuracy for attack A5 (malware-enabled audio
injection; ACC: 60% Vs. 55% no information rate - NIR). This
decrease in accuracy when occupants are present is likely due
to the attack pattern of A5 blending in with the occupants’
own use of the home assistant. Therefore, to improve detection
of A5 in future work, more expressive features are required
(such as voice command recognition or individual modelling

Fig. 13. AUC ROC curves for MAGPIE bandit arms (χ hyperparameters.

TABLE XI

AVERAGE DETECTION ACCURACY FOR RL χ ADAPTATION VS.
RANDOMLY SELECTED χ , P* OCCUPANT PRESENCE IN SMART

HOME TESTBED, † AVERAGE OVER 100 RUNS, SELECTING

FROM 10 BANDIT ARMS (I.E., χ BINS - SEE TABLE VIII)

of sound and IP/WiFi traffic mean absolute deviation according
to the time of day) to provide greater behavioural context
to the anomaly detection process. Omitting A5 from the
aggregated results yields an overall detection accuracy for
occupant presence models of 89%, an F1 score of 81%, TPR
of 99%, TNR of 84% and precision of 72%. On the other hand,
A5 is easily detectable by no-presence models (for the static
presence model configuration) due to the abnormal occurrence
of sustained levels of sound, with a detection accuracy of 93%.
The no-presence model achieved an F1 score of 85%, TPR
of 90%, TNR of 87% and precision of 83%. For individual
attack adaptation, RL also reports fairly low accuracy for
attack A7 in the presence models and attack A6 in both the
presence and no-presence models.

In practice, the optimal θ for presence and no-presence
threat detection may not be selected as the preferred value.
Importantly, the results show that a range of different θ settings
influence the RL adaptation process, whereby high θ values
(0.7 and 0.9) are the least effective for both presence and
no-presence models. In general, high θ favours high anomaly
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Fig. 14. Attack detection performance results comparison for MDS models
with cyber+physical features, multiple cyber features and cyber features based
on the TCP/IP stack only.

scores, which reduces false positives but may increase false
negatives. This characteristic can be observed for attack A7
(workflow automation compromise), where MAGPIE reduces
each set of attack data points to a single sample per window
(based on source and destination identity), which in turn is
saturated by a high volume of normal traffic, thus lowering
the anomaly score. Overall, the detection results illustrated
in Figure 9 demonstrate that the non-stationary UCB imple-
mentation is effective at adapting the detection sensitivity
to optimise the threat detection performance according to
the occupants’ θ configuration. From here on, we assess the
MAGPIE prototype’s threat detection performance according
to the best-performing θ and RL optimised isolation forest χ
parameters.

B. (Contribution 2) Considering Both Cyber and Physical
Sources of Data

Applying the best θ and χ parameters, for both individual
and aggregate attack dataset RL adaptation, in Figure 14 the
detection accuracy for the presence and no-presence models
across different MDS cyber and cyber-physical feature models
is presented. Here, MAGPIE prototype threat detection is
demonstrably more accurate, on average, when both cyber and
physical smart home data sources are used compared to cyber
features only. However, even without physical features (in this
case RF, audio and WiFi RSSI), extending the collection of
cyber features beyond traditional monitoring of TCP/IP traffic
significantly improves the detection accuracy across a wide
range of attack vectors in the smart home.

C. (Contribution 3) Self-Configuration Based on Automated
Inference of Human Presence

Figure 15 shows that presence inference returned high
classification accuracy during both attack and non-attack sce-
narios. A choice of θ = 0.3 yielded the highest overall
accuracy (93%) across both the presence and no-presence
datasets. However, there is a noticeable accuracy drop com-
pared to static detection model assignment for correctly detect-
ing presence during the audio injection attack (A5) when
there is no presence (62%). This is because the random forest
detection model has determined higher audio values to be
associated with presence state and thus incorrectly identifies
the audio injection attack as occupant presence. Consequently,
this failure has a negative impact on the detection of audio
injection with a high sensitivity for presence inference. On the

Fig. 15. Presence inference accuracy for each attack (Avg. ACC: θ 0.3=0.93,
θ 0.5=0.81, θ 0.7=0.76).

Fig. 16. AUC ROC curve (TPR Vs. FPR) performance for presence inference
during smart home attacks.

Fig. 17. Performance for static presence, no presence and dynamic real-time
presence anomaly model selection.

other hand, whilst increasing θ to 0.5 increases the detection
accuracy for audio injection during no presence (83%; increas-
ing further to 97% for θ = 0.54 - not shown in Figure 15), this
change has a negative effect on detection accuracy for attacks
A6 and A7 and further reduces the A5 detection accuracy
during the occupant presence state.

Figure 17 shows a noticeable advantage of dynamic recon-
figuration based on presence inference. When utilising the best
high and very high θ values for presence and no-presence
anomaly models, respectively, the method achieves slightly
lower detection accuracy overall (significantly lower in the
case of audio injection - A5 for non-presence) compared
to static model assignment (which requires explicit occupant
re-configuration to function, e.g., the occupant informing the
system when they are no longer present or active). Crucially,
however, without static or dynamic anomaly model assign-
ment, for both the presence and no-presence models, individual
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detection performance for alternate datasets is considerably
worse overall.

The experimental results are promising, especially as the
fusion of cyber and physical MDS features has proven to
be valuable for improving presence inference, as further
evidenced in the area under curve (AUC) receiver operat-
ing characteristic analysis on new, unseen MDS data shown
in Figure 16. Compared to the AUC score of 0.66 when
only cyber data sources are used, the aggregation of cyber
and physical data sources (i.e., the aMDS feed) yields an
AUC of 0.98 for presence inference. Here, instead of train-
ing a single MDS model for both presence and anomaly
detection, affected by increases in model dimensionality and
feature-masking for window synchronisation, these results
demonstrate that a dedicated presence classifier supports
the selection of presence-specific MDS models that directly
benefit from the feature context to detect attacks more
accurately.

D. Threat Detection Latency

Analysis of the detection latency using the best θ and
χ RL parameters for the presence and no-presence datasets
produced variable results for each attack. These differences
were expected, as the impact of different attacks on cyber
and physical feature behaviour may only become noticeable
later in the course of execution. For attacks A1, A2 and A7,
during human presence, detection was immediately triggered
(detection latency = 1 monitoring window) when the attack
was executed in the collection window, but the initial discovery
of A3 and A4 was three times slower and that of A6 was five
times slower. In the presence condition, A5 was undetectable.
In the no human presence condition, attacks A2, A4 and
A5 reported immediate detection, A1 and A3 required an
additional collection window for identification, and A6 and
A7 were four and three times slower, respectively. MAGPIE
has demonstrated that it is able to detect an attack soon after it
is executed, but there remains a trade-off in detection latency
and detection accuracy to be explored in the future.

VI. FUTURE WORK

In future work, the q parameter is an interesting and
potential candidate for further exploration within the RL
action-space for dynamic q assignments, alongside unsu-
pervised model hyperparameter adaptation. However, a con-
sideration when introducing q in this manner is that it
increases the computational complexity for the RL action-
space. As observed in Figure 3, the benefit of the increased
complexity does not clearly outweigh the simpler static q
definition. Therefore, dynamic determination of the optimal
q is an area that would ideally be explored in the context of
collaborative learning, such as federated threat detection adap-
tation in experiments across multiple coordinating households
and MAGPIE agents, with varying MDS configurations and
contrasting attack vectors.

It would also be interesting to explore how MAGPIE’s
detection adaptation might be applied in the form of cyber
resilience capability for machine-learning-based intrusion

detection itself, for example, as a proactive defence mechanism
against emerging adversarial machine learning attacks [45] that
disrupt detection accuracy in cyber-physical systems.

VII. CONCLUSION

We have evaluated MAGPIE in terms of four primary
contributions: the ability to detect previously unseen attacks
while taking into account the user’s risk tolerance; the ability
to adapt to changing conditions via reinforcement learning; the
benefit of using both cyber and physical sources of data; and
self-configuration of the choice of models based on whether
user presence is detected or not. The prototype has performed
well across a range of attack vectors at the application,
network, data link and physical layers. We have observed that
the incorporation of physical sources of data can noticeably
improve the performance for most of the attacks, especially for
attacks that are normally undetectable by systems that monitor
only TCP/IP traffic. We have also observed that by leveraging
the same data sources as for anomaly detection, we can detect
user presence sufficiently reliably, which in turn helps tailor
the anomaly detection models to the two cases of presence
and no presence, thereby improving their accuracy. Most
importantly, we have successfully tested our intuition that
in the context of smart home attacks, reinforcement learning
can meaningfully adapt an unsupervised anomaly classifier’s
hyperparameters based on its own confidence in its output.

We have made the source code of the MAGPIE imple-
mentation available to the research community to facilitate
extensions and experimental evaluation comparisons with new
methods. A natural extension would be to add real-time
response capabilities, such as isolating offending nodes or
re-configuring the radio frequency channel. Additionally,
MAGPIE can be extended to incorporate feedback from the
user, for example, to confirm whether a suspected anomalous
device or network behaviour is a result of their own activity
or not, to further improve the accuracy.
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