
Received May 12, 2020, accepted May 19, 2020, date of publication May 25, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996940

An Efficient Attribute-Based Multi-Keyword
Search Scheme in Encrypted Keyword Generation
YUANBO CUI 1, FEI GAO 1, YIJIE SHI1, WEI YIN 2,
EMMANOUIL PANAOUSIS 3, (Member, IEEE), AND KAITAI LIANG 3, (Member, IEEE)
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100020, China
3Department of Computer Science, University of Surrey, Guildford GU2 7XH, U.K.

Corresponding author: Yijie Shi (yijieshi2000@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61672110, Grant 61671082,
Grant 61976024, and Grant 61972048, and in part by the Fundamental Research Funds for the Central Universities under
Grant 2019XD-A01.

ABSTRACT With the growing popularity of cloud computing in recent years, data owners (DOs) now prefer
to outsource their data to cloud servers and allow the specific data users (DUs) to retrieve the data. Searchable
encryption is an important tool to provide secure search over the encrypted cloud data without infringing
data confidentiality and data privacy. In this work, we consider a secure search service providing fine-grained
and search functionality, called attribute-based multiple keyword search (ABMKS), which can be seen as
an extension of searchable encryption. In the existing ABMKS schemes, the computation operations in the
encrypted keyword index generation are time-consuming modular exponentiation, and the number of which
is linearly growing with the factor m. Here m is the number of keywords embedded in a file. To reduce the
computation overhead, in this paper, we propose anABMKSwith onlymultiplication operations in encrypted
keyword index generation. As a result, the computation cost of the encrypted keyword index generation is
more efficient than the existing schemes. In addition, the encrypted keyword indexes are aggregated into one
item, which is regardless of the number of underlying keywords in a file data. Finally, the security and the
performance analysis demonstrate that our scheme is both efficient and secure.

INDEX TERMS Searchable encryption, modular exponentiation, multiplication, attribute-based multiple
keywords search, cloud computing.

I. INTRODUCTION
With the flexibility and benefits provided by the cloud storage
[1], [2] and cloud computing [3], [4], data owners (DOs) pre-
fer to outsource the management of their data to the cloud ser-
vice provider (CSP) and rent the strong computation ability
of CSP. Because DOs pay more attention and consideration
to the privacy of data, DOs will encrypt their sensitive data
before outsourcing it to the CSP. However, data encryption
will cause a huge cost in terms of data usability, as the existing
solutions of keyword-based information retrieval on plaintext
data cannot be applied directly to the encrypted data. It is
impractical to download all the encrypted data from CSP and
decrypt it locally.

The associate editor coordinating the review of this manuscript and

approving it for publication was Longxiang Gao .

To realize the keyword search over encrypted data, some
solutions are proposed using fully-homomorphic encryption
[5] or oblivious RAMs [6], but these techniques will bring
huge computation overhead on both CSP and users. On the
contrary, searchable encryption [7] is a practical solution,
which allows the CSP to search over encrypted data on behalf
of the authorized users with a keyword search trapdoor pro-
vided by the users, and the CSP can retrieve thematching data
without learning information about the underlying plaintext.

Searchable encryption (SE) can be realized in both sym-
metric and asymmetric encryption settings. Abound of
research works [8], [9], [11]–[14] have been proposed to
realize various search functionalities, such as single keyword
search, multiple keywords search, ranked search etc. In the
symmetric searchable encryption (SSE) schemes, DOs have
to distribute a session key to DUs, which brings compli-
cated secret key distribution/management overhead to DOs.

99024 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3843-6673
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-2631-4193
https://orcid.org/0000-0001-7306-4062
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0002-3026-7537

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

Boneh et al. [15] first introduced the definition of searchable
encryption in public-key setting, which can resolve the issue
of distributing the session key in the SSE. Zheng et al.
[16] proposed new primitive called attribute-based keyword
search (ABKS) by integrating SE and attribute-based encryp-
tion [17]–[24]. ABKS is extended on basis of SE to realize
keyword search and access control simultaneously. Follow-
up [25], [26] are proposed to achievemultiple keyword search
based on [16]. Among the public-key encryption with key-
word search schemes, attribute-based multi-keyword search
(ABMKS) achieves more and more attention for its practical
applicability [25].

In ABMKS, DOs can realize the access control on their
data, which means only the authorized DUs can access to it.
More precisely, DOs encrypt their data based on an access
policy with attribute-based encryption and build encrypted
keyword indexes corresponding to the keyword extracted
from the data. If the data users’ attributes satisfy the access
policy and the trapdoor maths with the encrypted keyword
indexes simultaneously, they can retrieve and decrypt the
matching data. The existing ABMKS scheme [26] can sup-
port keyword search and comparable attributes through uti-
lizing 0-encoding and 1-encoding. However, in [26], the
computation operations in the encrypted keyword index gen-
eration are mainly modular exponentiations, which are time-
consuming compared to multiplication.

In this paper, we design an efficient ABMKS scheme,
called attribute-based multiple keyword search scheme with
only multiplication (ABMKS-WM) in encrypted keyword
generation by using Binary Vector and Polynomial (the
details of them shown as in Sections III-C-III-D), thus the
time cost of the encrypted keyword index generation is
more efficient compared to existing schemes, e.g., [25]–[27].
In addition, the encrypted keyword indexes are aggregated
into one item, which is regardless of the number of under-
lying keywords in a file. The contribution of this paper are
summarized as follows:

1) We design a secure ABMKS without exponentiation
in the encrypted keyword index generation. Unlike the
existing ABMKS schemes, e.g., [25]–[27], the compu-
tation operations in index generation are only multi-
plication, which is more efficient than exponentiation.
In addition, the encrypted keyword indexes are aggre-
gated into one item, which is regardless of the number
of underlying keywords in a file. To our best knowl-
edge, our design is the first of its type that achieves the
encrypted keyword index generation without exponen-
tiation in the model of ABMKS.

2) We prove that our design is secure against the chosen-
keyword attacks via the formal security analysis, and
our performance evaluation proves that the scheme is
efficient in terms of both the computation and com-
munication overhead, in particular, the time cost of
the ciphertext generation and data retrieval are more
efficient than that of the existing ABMKS schemes.

The remainder of this paper is organized as follows.
We briefly review related work in Section 2. In Section 3,
we present some basic primitives used in this paper and the
main building blocks for our construction. We describe the
system and threat models, the construction, and the security
model of our scheme in Section 4. In Section 5, we give
the design of our scheme. Section 6 presents the security
analysis of the proposed scheme. The experimental analysis
and the comparison with some related works are presented in
Section 7. We conclude the paper in Section 8.

II. RELATED WORK
Searchable encryption enables DOs or DUs to execute key-
word search over encrypted data. Based on the different cryp-
tography primitives, searchable encryption can be roughly
classified into symmetric SE and asymmetric ones.

Song et al. [7] first proposed the notion of symmetric SE
and presented a construction of it. Subsequently, a variety
of symmetric SE schemes have been proposed. Goh [28]
put forward the security definitions for SSE and proposed
a construction based on Bloom filter. Bao et al. [10] pro-
posed a SSE scheme in multi-user model. Boneh et al. [15]
first put forward the notion of public-key encryption with
keyword search (PKES), and Abdalla et al. [30] enhance
the foundations of PEKS. Abundant of PEKS schemes
[31]–[38] are proposed to achieve various functionalities.
Li et al. [38] proposed a scheme which supports both abil-
ities and provides flexible keyword update service. Yin et al
[39] proposed an ingenious secure query scheme to guarantee
data security and system flexibility in the multiple data own-
ers model, which allows each DO to adopt randomly chosen
temporary keys to build secure indexes for different files.
By leveraging the attribute-based encryption primitive, Yin
et al. [41] put forward a fine-grained authorized keyword
secure search scheme in which the access policy supports
AND, OR, and threshold gates and Yin et al. [42] proposed a
ABE scheme allows the DO to conduct a fine-grained search
authorization for a DU. Liang and Susilo [40]present an ABE
with keyword search schemes which allow DO to warrant
keyword search capability to authorized DU.

Chen et al. [36] proposed a public key encryption with
keyword search in dual-server model, which can resist the
inside keyword guessing attack [43]. In order to check the
correctness of retrieving results from the semi-trusted CSP,
Liu et al. [35] and Miao et al. [26] presented the verifiable
SE schemes, respectively.

To realize the access control and keyword search on the
data at the same time, Zheng et al. [16] proposed a new search
service called attribute-based keyword search (ABKS), which
formed by combining of attribute-based encryption (ABE)
and SE. And later [25], [26] were proposed to achieve
extended functionalities based on [16]. For example, Miao
et al. [25] proposed an ABKS with user revocation in multi-
owner settings.

Golle et al. [29] proposed the concept of conjunctive
keyword search in the SE system. Later on, Park et al.

VOLUME 8, 2020 99025

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

[44] extended the notion into public key system. Attribute-
BasedMultiple Keyword Searchable supports multi-keyword
search and access control on encrypted data simultaneously.
However, in most existing ABMKS schemes, e.g., [25], [26],
the computation operations in encrypted keyword index gen-
eration are time-consuming exponentiation, and the num-
ber of which is growing linearly with the factor m. Here
m is the number of keyword in a file. Li et al. [27] pro-
posed Towards Privacy-Preserving and Efficient Attribute-
Based Multi-Keyword Search (TPPE-ABMKS) through uti-
lizing keyword dictionary tree and the subset cover, which
can achieve multi-keyword search with fine-grained access
control, and the number of the encrypted keyword index is
relatively small. However, the computation operations in the
encrypted keyword index generation are pairing operations,
which are also time-consuming.

III. PRELIMINARY
We present a brief review of some basic primitives used
in this work in III-A and III-B. We also define the
main building blocks for constructing our scheme in
Sections III-C and III-D.

A. BILINEAR MAP
As in [17], [18], we letG andGT be two multiplicative cyclic
groups of prime order p, g a generator of the group G and
a bilinear mapping e: G × G −→ GT satisfies following
properties:

• Bilinearity: e(ga, gb) = e(g, g)ab, ∀g ∈ G, ∀a, b ∈ Z∗p.
• Nondegeneracy: e(g, g) 6= 1.
• Computability: the e(ga, gb) can be computed by an
efficient algorithm, ∀g ∈ G, ∀a, b ∈ Z∗p

B. ACCESS TREE T
Let T be a tree representing an access policy [17], [18]. In an
access policy T , each non-leaf of T represents a threshold
gate, each non-leaf is described by its children and a threshold
value. Let numv denote the number of children of a node v,
and the children from left to right are labeled as 1, . . . , numv,
while kv (kv ≤ numv) denotes the threshold value associated
with the node v, when kv = 1, the threshold gate is an
OR gate and when kv = numv, it is an AND gate. Each
leaf node of T is described by an attribute and a threshold
value kv = 1.
To better understand the access tree, we define a few

functions as follow, let parent(v) represent the parent of node
v. If v is a leaf node, att(v) represents the attribute associated
with the leaf node v. Let index(v) denote the label of the node
v, and Tv represent the subtree of T rooted at node v.

Let Tv(γ) = 1 indicate that the attribute set γ satisfies
the access tree Tv. If v is a non-leaf node, we can compare
Tv(γ) recursively as follows, compute Tv′ (γ) for all children
v′ of the node v, if at least kv children of the node v return
1, then Tv(γ) = 1. If v is a leaf node and att(v) ∈ γ , then
Tv(γ) = 1.

FIGURE 1. An example of permutation σ Generation.

C. KEYWORD DICTIONARY AND BINARY VECTOR
Let W = [w1, . . . ,wn] be the keywords dictionary in the
system, and WQ be the query keywords set chosen by DU,
e.g.,WQ = {w1,w3,w5,w7}. We representWQ with a binary

vector
→

Q based on the keyword dictionaryW as follows:
→

Q = [q1, . . . , qn]

where {
qi = 1 : wi ∈ WQ

qi = 0 : wi /∈ WQ

For easy to understand, hereafter, we set n = 8 in all
the examples, e.g., when W = [w1, . . . ,w8] and WQ =

{w1,w3,w5,w7}, then
→

Q = [1, 0, 1, 0, 1, 0, 1, 0].
Let WD be a keywords set that appears in a file, we rep-

resent WD with a binary vector
→

D based on the keyword
dictionaryW as follows:

→

D = [d1, . . . , dn]

where {
di = 1 : wi ∈ WD

di = 0 : wi /∈ WD

For example, when W = [w1, . . . ,w8] and WD =

{w1,w3,w5,w6,w7}, then
→

D = [1, 0, 1, 0, 1, 1, 1, 0].

Definition 1: Given the binary vectors
→

Q and
→

D, if for all

i = 1 to n, qi ≤ di, we write
→

Q ⊆
→

D, it is to say that WQ ⊆

WD.

D. MAIN IDEA
1) INDEX GENERATION
Before building the encrypted keyword indexes for the key-
words set WD of a file f̂ , DO first randomizes the order of
keyword in the keyword dictionaryW to get the new keyword
dictionary W̃ = [w̃1, . . . , w̃n], then obtains the permutation
σ .
We give an example of permutation generation as shown

in Fig. 1, σ = [1, 5, 6][2, 4][3, 8, 7], where [1, 5, 6] means
w̃5 = w1, w̃6 = w5, w̃1 = w6, it’s to say that the keyword
w1 in W is shifted to the 5-th position of W̃ , keyword w5 in
W is shifted to the 6-th position of W̃ , keyword w6 in W is
shifted to the 1-th position of W̃ . [2, 4] and [3, 8, 7] follow

99026 VOLUME 8, 2020

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

the same rule as [1, 5, 6], and where [2, 4] means w̃4 = w2,
w̃2 = w4; where [3, 8, 7] means w̃8 = w3, w̃7 = w8 and
w̃3 = w7. We can see that the total number of possible σ is
n! = n×(n−1)× . . .×2×1. As a result, an adversary has the
probability of 1/n! to guess it, e.g., when n = 500, then the
probability is negligible. The DO will generate the encrypted
keyword indexes for the keywords set WD with W̃ and σ as
follows:

First, as shown in Section III-C, DO will gen-

erate a binary vector
→

D = [d1, . . . , dn] for WD
based on the new keyword dictionary W̃ . For example,
when W̃ = [w6,w4,w7,w2,w1,w5,w8,w3], WD =

{w1,w3,w5,w6,w7}, then
→

D = [1, 0, 1, 0, 1, 1, 0, 1] and the
permutation σ = [1, 6, 5][2, 4][3, 7, 8].

Second, with the binary vector
→

D = [d1, . . . , dn], compute

the function f (x,
→

D) and the encrypted keyword index I for
the keywords setWD as follows:

f (x,
→

D) =
n∏
j=1

(x − H (σ ||j))dj (1)

I = f (x,
→

D)|x=H (Encode(σ ||K)) (2)

where H is hash function, K is a random symmetric key
which is used to encrypt the file f̂ . Note that the operations

in I = f (x,
→

D)|x=H (Encode(σ ||K)) is multiplication but not
modular multiplication.

At last, DO chooses an access policy tree T and encrypts
the permutation σ and K based on the access policy tree by
using ABE scheme.

2) TRAPDOOR GENERATION
If a data user’s attributes set satisfies the access policy tree T ,
then he/she can get the permutation σ and the symmetric key
K . Then the DU can generate the new keyword dictionary W̃
by using the σ .
As shown in Section III-C, let WD be the query keywords

set chosen by a DU, and DU then generates the binary vector
→

Q = [q1, . . . , qn] for WQ based on the new keyword dictio-
nary W̃ . For example W̃ = [w6,w4,w7,w2,w1,w5,w8,w3],

WQ = {w1,w3,w5,w7}, then
→

Q = [0, 0, 1, 0, 1, 1, 0, 1].

Then, DU can compute the function f (x,
→

Q) and the trap-
door T corresponding to keywords setWQ as follows:

f (x,
→

Q) =
n∏
j=1

(x − H (σ ||j))qj (3)

T = f (x,
→

Q)|x=H (Encode(σ ||K)) (4)

where H is a hash function, K is a random symmetric key
which is used to encrypt the file f̂ . Note that the operation

in T = f (x,
→

Q)|x=H (Encode(σ ||K)) is multiplication but not
modular multiplication.

FIGURE 2. s-bit multiply by t-bit.

FIGURE 3. An example of 5-bit multiply by 4-bit.

3) MATCH PROCESS

If WQ ⊆ WD, then
→

Q ⊆
→

D, thus for all i = 1 to n, qi ≤ di.

We can note that f (x,
→

D)

f (x,
→

Q)
=

n∏
j=1

(x − H (σ ||j))dj−qj is a polyno-

mial function in x. For that, I
T =

f (x,
→

Di)

f (x,
→

Q) |x=H (Encode(σ ||K))
is

a integer, it means that I can be exactly divisible by T , then
I mod T = 0.
Remark: Based on the method above to generate encrypted

keyword indexes, the sizes of the encrypted keyword indexes
and the trapdoor are aggregated into one item. In addition,
the computation operations in encrypted keyword index and
the trapdoor generation are multiplications. As described
above, the encrypted keyword index is I , which is a large
number. We give the theorem of the bit long for the I as
follow.
Theorem 1: Let H be the hash function H : {0, 1}∗→ Z∗p,

the bit length of I = f (x,
→

D)|x=H (Encode(σ ||K)) is at most m ·
|Z∗p|, here m is the number of the keyword in WD, |Z∗p| is the
bit length of an element in Z∗p.

Proof: First, as shown in the Fig. 2, we prove that if a
s-bit number multiply by a t-bit number, then the bit length
of the product is at most s+t.

The Fig. 2 describes the rule of the binary multiplication,
the ∗ denotes 0 or 1. We give a example of the 4-bit number
(1010) multiply by a 5-bit number (11100) in Fig. 3, the com-
puting rule of binary multiplication is the same as the decimal

VOLUME 8, 2020 99027

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

FIGURE 4. The basic framework of our scheme.

multiplication, the product of (0×0) is 0, the product of (1×1)
is 1, the product of (0× 1) is 0, we can see that the bit length
of the product of (4-bit) and (5-bit) is at most 9-bit. As the
computing rule in the Fig. 3, we can note that the bit length
of product of s-bit number× t-bit number is at most s+t when
the red ∗ is 1.
Note that I is the product of m |Z∗p|-bit numbers multiply

continuously, then the bit length of I is at most m · |Z∗p|. �

IV. PROBLEM FORMULATIONS
In this section, we present the systemmodel, the threat model,
the scheme definition, and the security model, respectively.

A. SYSTEM AND THREAT MODEL
Wepresent the systemmodel of our scheme in Fig. 4, which is
the same as the one in [25]. Our scheme involves four entities:
DO, DU, CSP and Authority. The DO will encrypt the data
files set F as well as corresponding keyword sets with an
access policy before uploading them to the CSP. The CSP
provides the storage services and executes keyword search
operations on behalf of the DU. When a DU wants to make a
search query over the encrypted data, he/she generates a trap-
door by his/her specified query keywords and submits it to
CSP. On receiving the trapdoor, CSP retrieves the appropriate
data file by using the trapdoor, if the user’s attributes satisfy
the access policy and the trapdoor matches the encrypted
keyword index I . The role of Authority is to issue credentials
(PK/SK) to the data owners/users, the credentials are sent
over secure communication channel.

The threat model of our system is as follows: DO, Author-
ity and the authorized data users are trusted, but the CSP
is a trusted-but-curious entity which honestly executes the
protocol but attempts to learn some sensitive information,
e.g., the query keyword information.

B. THE CONSTRUCTION OF ABMKS-WM SCHEME
In this section, we present the overview of our scheme, it is
composed of eight algorithms as follows:

• Setup(λ) Take as input the security parameter λ, output
the master keyMSK and the public key PK .

• KeyGen(PK ,MSK , S) Take as input user’s attribute set
S,MSK and PK , output the private key SK for the user.

• Encrypt(PK , T ,F,WD) Take as input a files set F =
f1, . . . , fN . LetWD be the keywords set of the file f̂ . For
each file f̂ ∈ F , DO generates a permutation σ respect
to the file f̂ , and then generates ciphertexts C of the file
f̂ and index I of the keywords set WD according to the
symmetric key K and the access tree T , respectively.
At last sends the ciphertext CT = {C, I } to the CSP.

• GenTK(PK , SK) Take as input public key PK and the
private key SK for user’s attribute set S, output the
transformation key TK and the corresponding retrieving
key RK .

• Transform(CT ,TK) Take as input the ciphertext CT
and the transformation key TK , output a partially
decrypted ciphertext CT ′.

• Decrypt(CT ′,RK) Take as input the transformed
ciphertext CT ′ and the retrieving key RK , output the
permutation σ and the symmetric key K .

• Trapdoor(PK , SK ,RK ,WQ, σ,K) Take as input the
public key PK , private key SK and corresponding key
RK , query keywords set WQ, the permutation σ , output
the trapdoor T for the query keywordWQ.

• Retrieve(PK ,CT ,T) Take as input the ciphertext CT
and the trapdoor TWQ for query keywords set WQ. CSP
checks whether TWQ satisfies the ciphertext CT , if it
holds, then returns the search results C to user, other-
wise, outputs ⊥.

C. SECURITY MODEL
In this section, we present the security model of our scheme
as follows.

The one goal of our scheme is that it can resist the
chosen-keyword attack (CKA) [26]. As described in threat
model, only the CSP is honest-but-curious. Intuitively, CKA
means that the CSP (an adversary A) cannot learn any-
thing information about plaintext keywords set from the key-
words set ciphertext except for the search tokens and the
results.We present the security model by utilizing the chosen-
keyword attack (CKA) game as follows:
Definition 2: Chosen-Keyword Attack Game:

• Setup: The challenger C executes the Setup algorithm to
get the public parameters PK and master key MSK, then
sends the public parameters PK to the adversaryA. The
adversary A chooses an access tree T , which is sent to
the challenger.

• Phase 1: A can adaptively query the following oracles
for polynomially many times, and the challenger C ini-
tializes an empty keyword list Lkw and an empty set D.

1) OKeyGen(S): On input a set of attributes S, the chal-
lenger C runs the KeyGen algorithm to get SKS and
sets D = D

⋃
S. It then returns it to adversary A.

99028 VOLUME 8, 2020

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

2) OGenTK (SK): On input a set of attributes S, if S ∈
D, the challenger C runs the GenTK algorithm to
get TKS . Otherwise, the challenge runs the KeyGen
algorithm to get SKS , and runs GenTK to get TKS .
It then returns the TKS to adversary A.

3) OTrapdoor (SK ,WQ): On input a set of keyword WQ
and the SK, the challenger C runs the Trapdoor
algorithm to get TWQ and sets Lkw = Lkw

⋃
WQ,

if the attributes set S satisfies the policy tree T .
It then returns it to adversary A.

• Challenge: A randomly chooses two keywords set W ∗0
and W ∗1 , where W

∗

0 , W
∗

1 /∈ Lkw, it means that W ∗0 , W
∗

1
cannot be queried in OTrapdoor . Then, the challenger C
picks a random b ∈ {0, 1} and encrypts W ∗b as CT ∗

by using Encrypt algorithm. Finally, C returns CT ∗ to
adversary A.

• Phase 2:A continues to query the oracles as in Phase 1,
but with the restriction that (S,W ∗0) and (S,W

∗

1) cannot
be the input toOTrapdoor if the attribute set S satisfies the
access policy T .

• Guess:A outputs a guess bit b′, and wins the CKA game
if b′ = b; otherwise, it fails.

Let |Pr[b′ = b] − 1
2 | be the advantage of A winning the

above CKA game.
Definition 3: Our scheme is secure against chosen-

keyword attack if the advantage of any A winning the CKA
game is negligible.

The another security goal of our scheme is that the adver-
sary cannot obtain the keyword information from the query
trapdoor generated by data user, we give formal security
definition of it based on a game between a adversaryA and a
challenger C as in the state-of-the-art work [41].
Definition 4: The query trapdoor unrecoverable security

against eavesdropper attack model.
First, A submits challenge query keywords set for times

to the challenger C and in return C sends the corresponding
ciphertext to A. Second, A sends two query keywords set
W ∗0 and W ∗1 to C, where the restrict is that W ∗0 and W ∗1 are
not challenged before. Then, C chooses a bit b ∈R {0, 1}
and generates the trapdoor TW ∗b for the W ∗b , and sent the
trapdoor TW ∗b to A. A is allowed to continue to query C for
the trapdoor of any keywords set W ∗, but the only restriction
is that W ∗ is not W ∗0 or W ∗1 . Finally, A outputs a guess b′.
We define the advantage thatA wins the game to be |Pr[b′ =
b] − 1

2 |. If |Pr[b
′
= b] − 1

2 | is negligible, we say that our
proposed query keyword encryption achieves query trapdoor
unrecoverable security against eavesdropper attack model.
Definition 5: Our scheme is secure if the advantage of any

A winning the game in Definition 4 is negligible.

V. OUR CONSTRUCTION
We present some notations used in our construction
in Table 1, and introduce our technical construction details
below.

TABLE 1. Notation used in ABMKS-WM construction.

• Setup(λ) → (PK ,MSK): The authority executes this
algorithm. Given a security parameter p, the authority
chooses a bilinear groupG of prime order pwith genera-
tor g, and chooses two random numbers α1, α2 ∈ Z∗p and
three hash functions H : {0, 1}∗ → Z∗p,H1 : {0, 1}∗ →
G,H2 : GT → {0, 1}l , where H2 is a pseudo-random
generator. At last, the authority chooses a pair of encode
and decode functions (Encode,Decode), where Encode
denotes a function which encodes a character string to
binary string, Decode denotes a function decode a binary
string to character string. For example, Encode([1, 2]a)
→ 101101111000110110011001010111011100001,
Decode(101101111000110110011001010111011100001)
→ [1, 2]a. The authority generates the public key PK
and master keyMSK as follows:

PK = {G, g, h = gα2 , e(g, g)α1 ,Encode,Decode}

MSK = {α2, gα1}

• KeyGen(PK , S,MSK) → SK : Authority executes this
algorithm. Given a DU’s attribute set S, the authority
chooses a random number r ∈ Z∗p, and chooses ri for
each attribute i ∈ S. Finally, the authority generates the
private key SK for the DU as follows:

SK = {D = g(α1+r)/α2 ,

∀i ∈ S : Di = grH1(i)ri ,D′i = gri}

• Encrypt(PK , T ,F) → CT : DO executes this algo-
rithm. Let F = {̂f1, . . . , f̂N } be the file set, to easy
understand the encrypt algorithm, we give an example
of encrypting one file f̂ ∈ F . Let W = [w1, . . . ,wn]
be the keyword dictionary, WD be the keywords set that
appears in a file f̂ .
DO will encrypt the file f̂ using the corresponding sym-
metric key K to generate the ciphertext C , e.g., using
AES to encrypt the file f̂ , but the exact algorithm is out
of the scope of our discusses.
After that, DO will generate the permutation σ and the

binary vector
→

D for the keywords setWD as follows:

VOLUME 8, 2020 99029

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

1) By randomizing the order of elements in the
keyword dictionary W to get the new keyword
dictionary W̃ and then obtaining permutation σ
described in Section III-D.

2) Generate the binary vector
→

D = [d1, . . . , dn] for
the keywords setWD described in Section III-D.

For example, when

W̃ = [w6,w4,w7,w2,w1,w5,w8,w3]

WD = [w1,w3,w5,w6,w7]

then

σ = [1, 5, 6][2, 4][3, 8, 7]
→

D = [1, 0, 1, 0, 1, 1, 0, 1]

DO computes the ciphertext CT as follows:
1) Choose a polynomial qv for each node v in the

access policy tree T in a top-down manner, and
the degree dv of qv is kv − 1, where kv is the
threshold value of the node v. Starting with the
root node R of T , DO chooses a random s ∈ Z∗p
and sets qR(0) = s, it then randomly chooses dR
other points to define the polynomial qR. For the
non-root node v, it sets qv(0) = qparent(v)(index(v))
and randomly chooses dv other points to define the
polynomial qv.
Let Y be the set of leaf nodes in the access tree T ,
then DO computes

θ1 = e(g, g)H (θ0) · e(g, g)α1 s,

θ2 = θ0 ⊕ H2(e(g, g)H (θ0)),

θ3 = hs, θy = gqy(0),

θ ′y = H1(att(y))qy(0), ∀y ∈ Y .

where θ0 = Encode(σ ||K).

2) With the permutation σ and the
→

D corresponding

file f̂i, compute f (x,
→

D) and the encrypted keyword
index I for WD as follows:

f (x,
→

D) =
n∏
j=1

(x − H (σ ||j))dj (5)

I = f (x,
→

D)|x=H (θ0) (6)

where f (x,
→

D) is a polynomial function and the degree
of it is at most (n−1). Finally, DO generates the specific
ciphertexts CT for the file f̂ as follows:

CT = (C, I , {T , θ1, θ2, θ3, θy, θ ′y})

• GenTK(PK , SK) → TK : DU executes this algorithm.
Given the public key PK and the private key SK = {D =
g(α1+r)/α2 ,Di = grH1(i)ri ,D′i = gri}. DU chooses a
random value u ∈ Z∗p, and computes transformation key
TK and the corresponding retrieving key RK as follows:

TK = {S,D∗ = Du,D∗i = Dui ,D
′
i
∗
= D′i

u
} RK = u

• Transform(TK ,CT) → CT ′: CSP executes this algo-
rithm. On receiving the TK from DU, CSP then checks
whether DU’s attributes set S satisfies the access tree T .
If S does not satisfy T , the algorithm outputs ⊥; other-
wise, CSP continues to run the algorithm as follows:
1) If the node x is a leaf node in T . We let i=att(x).

If i ∈ S, then compute φx as

φx =
e(D∗i , θx)

e(D
′∗
i , θx ′)

=
e(gru · H1(i)riu, gqx (0))
e(griu,H1(i)qx (0))

= e(g, g)ru·qx (0)

2) If node x is not a leaf node in T , we get φx by
computing φx ′ using a recursive algorithm, where
x ′ is child node of x. Let Sx be an arbitrary kx
set of children nodes x; if no such set exists, set
φx ′ = ⊥; otherwise, compute φx ′ as follows, where
i =index(x ′), S ′x = {index(x

′) : x ′ ∈ Sx}

φx =
∏
x ′∈Sx

φ
1i,S′x (0)

x ′

=

∏
x ′∈Sx

(e(g, g)ru·qx′ (0))1i,S′x (0)

=

∏
x ′∈Sx

(e(g, g)ru·qparent(z)(index(z)))1i,S′x (0)

=

∏
x ′∈Sx

(e(g, g)ru·qx (i))1i,S′x (0)

= e(g, g)ru·qx (0)

If the tree is satisfied by S, we set A = φroot =

e(g, g)ru·qR(0) = e(g, g)rus, and compute the
partially-decrypted ciphertext pct as follow.

pct = e(θ3,D∗)/A

= e(hs, g(α1+r)·u/α2)/e(g, g)rsu

= e(g, g)α1su

Return out CT ′ = (θ1, θ2, pct).
• Decrypt(RK ,CT ′) → σ ||K : DU executes this algo-
rithm. On receiving the CT ′ from CSP, DU obtains σ
and K as follows.

e(g, g)H (θ0) = θ1/pct
1
RK ,

=
e(g, g)H (θ0) · e(g, g)α1s

(e(g, g)α1su)
1
u

. (7)

Encode(σ ||K) = θ2 ⊕ H2(e(g, g)H (θ0)). (8)

σ ||K = Decode(Encode(σ ||K)). (9)

Return the permutation σ and the symmetric key K
corresponding to the file f̂ .

• Trapdoor(PK , SK ,RK ,WQ, σ,K) → T : DU executes
this algorithm. Let WQ be the query keywords set of
DU. After obtaining the permutation σ , DU generates

99030 VOLUME 8, 2020

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

the new keyword dictionary W̃ = [w̃1, . . . , w̃n] by using
σ .
After that, DU will generate the binary vector

→

D for the
keywords setWQ as follows:

1) Generate the binary vector
→

Q = [q1, . . . , qn] for
the keywords setWQ described in Section III-D.

For example, when

σ = [1, 6, 5][2, 4][3, 7, 8]

WQ = [w1,w3,w5,w7]

then

W̃ = [w6,w4,w7,w2,w1,w5,w8,w3]
→

Q = [0, 0, 1, 0, 1, 1, 0, 1]

Finally, compute f (x,
→

Q) and T with σ ,
→

Q as

f (x,
→

Q) =
n∏
j=1

(x − H (σ ||j))qj (10)

T = f (x,
→

Q)|x=H (θ0) (11)

where θ0 = Encode(σ ||K). and then return the trapdoor
T .

• Retrieve(PK ,CT ,T) → (C&⊥): CSP executes this

algorithm. According to the definition of f (x,
→

D) and

f (x,
→

Q) in Encryption and Trapdoor algorithm. We can

infer that f (x,
→

D)

f (x,
→

Q)
=

n∏
j=1

(x−H (σ ||j))dj−qj is a polynomial

function in x, only if only the
→

Q ⊆
→

D. Otherwise, it is

not a polynomial function. Thus if f (x,
→

D)

f (x,
→

Q)
is a polynomial

function in x, when set x = H (Encode(σ ||K)) which is

a integer, then f (x,
→

D)

f (x,
→

Q)
=

I
T is also a integer. This means

that I can be exactly divisible by T . Thus, if Eq.(9) holds,

thereby
→

Q ⊆
→

D (WQ ⊆ WD), CSP send the associated
search result C to the user; otherwise, return ⊥.

I mod T ?
= 0 (12)

where mod represents integer modular operation. On
receiving all the search results from CSP, the user can
decrypt them with the corresponding symmetric key K .

Correctness Analysis:Assume that the submitted attributes

set S satisfies the access policy tree T and
→

Q ⊆
→

D (WQ ⊆

WD), we have that

f (x,
→

D)

f (x,
→

Q)
=

n∏
j=1

(x − H (σ ||j))dj−qj (13)

I
T
=

f (x,
→

D)

f (x,
→

Q) |x=H (Encode(σ ||K))

=

n∏
j=1

(H (σ ||K),
→

Q)− H (σ ||j)dj−qj) (14)

I mod T = 0 (15)

Then, we state that Eq.(12) holds if
→

Q ⊆
→

D (WQ ⊆ WD).

VI. SECURITY ANALYSIS
In this section, we present the security analysis of our scheme
which is proved to be secure by using the following theorem.
Theorem 2: Given the oracle H1,H2 and the one-way

hash function H, and support that the CP-ABE scheme [18]
is selectively CPA-secure, then the ABMKS-WM scheme is
SCKA secure.

Proof: To prove this theorem, we present the two games
as follows:
• Game 0: The Selectively Chosen-Keyword Attack
Game of ABMKS-WM scheme.

• Game 1: Same as Game 0 except for the way that the
challenger generates the challenge ciphertext CT ∗ =
(I , {T , θ1, θ2, θ3, θy, θ ′y}), where the item I is a random
integer and the bit length of I is about |Z∗p|m-bit, the rest
items of CT ∗ are generated as in Game 0.

We prove this theorem by the following two lemmas.
Lemma 1 proves thatGame 0 andGame 1 are indistinguish-
able; Lemma 2 proves that the advantage of the adversary in
Game 1 is negligible. Therefore, we state that the advantage
of the adversary in Game 0 is negligible and the Theorem 2
is completed. �
Lemma 1: Support that the CP-ABE scheme [18] is selec-

tively CPA-secure, then theGame 0 andGame 1 are compu-
tationally indistinguishable.

Proof: We state that if there exists an adversary A
who can distinguish the Game 0 and Game 1 with a non-
negligible advantage ε, we then can build an algorithm B that
can break of the CP-ABE scheme [18] with a non-negligible
advantage at least ε.

Let C be the challenger corresponding to B in the secure
game of CP-ABE scheme [18]. The B runs A by executing
the following steps.
• Init: A gives B a challenge access policy T ∗. B sends
the T ∗ to C as its challenge access policy and is given
the public key PK ′ of the CP-ABE scheme [18]. PK ′ =
{G, g, h = gα2 , e(g, g)α1 ,H1}

• Setup: B chooses two hash functions H : {0, 1}∗→ Z∗p,
H2 : GT → {0, 1}∗, then chooses a pair of encode
and decode functions (Encode,Decode) and a keyword
dictionaryW , then sends the public key PK={G, g, h =
gα2 , e(g, g)α1 ,H1,H2,H ,Encode,Decode} to A.

• Phase 1: The adversary A issues private key, transfor-
mation key and trapdoor generations generations to the
following oracles, respectively.
1) When A adaptively issues a private key query for a
set of attributes S, B calls the key generation oracle of C
on S to obtain the private key SK . Then, returns the SK
to A.

VOLUME 8, 2020 99031

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

2) WhenA adaptively issues a transformation key query
for a set of attributes S, chooses a random u ∈ Z∗p and
computes TK = SKU . Then, returns the TK to A.
3) When A adaptively issues a trapdoor query for
S and keywords set WQ, chooses a random permuta-
tion σ of the keyword dictionary W , computes T =

f (x,
→

QWQ)|x=H (Encode(σ ||K)), where K is a random sym-
metric encryption key. If S satisfies T , B stores the
keywords setWQ in the keyword list LWQ .

• Challenge: A summits two keyword setsWD0 andWD1
to be challenged on, with the restriction that WD0 and
WD1 have not been queried in the list LWQ . B chooses
a random bit δ ∈ {0, 1}, two random symmetric keys
K0 and K1, and two random permutations σ0 and σ1,
and sends the σ0, σ1, K0, K1 and T ∗ to C. C chooses
a random bit β ∈ {0, 1}, and encrypts σβ and Kβ under
the public key PK ′ and T ∗ by using the encryption algo-
rithm of CP-ABE scheme [18], and sends the resulting
ciphertext CT ∗′ = ({T , θ1, θ2, θ3, θy, θ ′y}) to B. Then

computation I = f (x,
→

DWDδ)|x=H (Encode(σδ ||Kδ)). Finally,
B sets CT ∗ = (I , {T , θ1, θ2, θ3, θy, θ ′y}), and sends CT ∗

to A as its challenge ciphertext.
• Phase 2: This phase is similar to Phase 1, with the
restriction that WD0 and WD1 have not been issued in
Phase 1.

• Guess: The adversary outputs a guess δ′ for δ. B also
outputs δ′ for β.

Note that, if δ = β, then B has properly simulated Game
0; otherwise, has properly simulated Game 1. Thus, if A
can distinguish Game 0 and Game 1 with non-negligible
advantage ε, we can build B algorithm to break the CP-ABE
scheme [18] with non-negligible advantage ε. �
Lemma 2: Assume that the CP-ABE scheme [18] is selec-

tively CPA-secure, then the advantage of the adversary in
Game 1 is negligible. Proof: We state that if there exists
an adversaryAwho canwin theGame 1with a non-negligible
advantage ε, we then can build an algorithm B that can break
the CP-ABE scheme [18] with a non-negligible advantage at
least ε.
Let C be the challenger corresponding to B in the secure

game of CP-ABE scheme [18]. B runs A by executing the
following steps.

• Init: The A gives B a challenge access policy T ∗. B
sends the T ∗ to C as its challenge access policy and is
given the public key PK ′ of the CP-ABE scheme [18].
PK ′ = {G, g, h = gα2 , e(g, g)α1 ,H1}

• Setup: B chooses two hash functions H : {0, 1}∗ →Z∗p,
H2 : GT → {0, 1}∗, then chooses a pair of encode and
decode functions (Encode,Decode) and a keyword dic-
tionary W , then sends the public key PK = {G, g, h =
gα2 , e(g, g)α1 ,H1,H2,H ,Encode,Decode} to A.

• Phase 1: The adversary T issues private key, transfor-
mation key and trapdoor generations generations to the
following oracles, respectively.

1) When the adversaryA adaptively issues a private key
query for a set of attributes S (chose by A), B calls the
key generation oracle of C on S to obtain the private key
SK . Then, returns the SK to A.
2)When the adversaryA adaptively issues a transforma-
tion key query for a set of attributes S, chooses a random
u ∈ Z∗p and computes TK = SKU . Then, returns the TK
to A.
3) When the adversary A adaptively issues a trapdoor
query for S and keywords setWQ (chose byA), chooses
a random permutation σ of the keyword dictionary W ,

computes T = f (x,
→

QWQ)|x=H (Encode(σ ||K)), where K is
a random symmetric encryption key. If S satisfies the T ,
B stores the keywords setWQ in the keyword list LWQ .

• Challenge: A summits two keyword setsWD0 andWD1
to be challenged on, with the restriction that WD0 and
WD1 have not been queried in LWQ . B chooses a random
bit δ ∈ {0, 1}, two random symmetric keys K0 and K1,
and two random permutations σ0 and σ1, and sends σ0,
σ1, K0, K1 and T ∗ to C. C chooses a random bit β ∈
{0, 1}, and encrypts σβ and Kβ under the public key PK ′

and T ∗ by using the encryption algorithm of CP-ABE
scheme [18], and sends the resulting ciphertext CT ∗′ =
{T , θ1, θ2, θ3, θy, θ ′y} to B. Then randomly generate I ,
where I is a random integer and the big long of I is about
|Z∗p|m. Finally, B sets CT ∗ = (I , {T , θ1, θ2, θ3, θy, θ ′y}),
and sends CT ∗ to A as its challenge ciphertext.

• Phase 2: This phase is similar to Phase 1, with the
restriction that WQ0 and WQ1 have not been issued in
Phase 1.

• Guess: The adversary outputs a guess δ′ for δ. B also
outputs δ′ for β.

We can see that B has properly simulatedGame 1. Thus, ifA
win Game 1 with non-negligible advantage ε, we can build
an algorithm B to break the CP-ABE scheme [18] with non-
negligible advantage at least ε. �
Theorem 3: Given the one-way hash function H, and sup-

port that the CP-ABE scheme [18] is selectively CPA-secure,
then achieves query trapdoor unrecoverable security against
eavesdropper attack model.

Proof: Our proof is similar to the proof in the scheme
[16], [41], we prove the Theorem 3 by using the game as
follows:

Setup: Let CTWD denote the ciphertext corresponding to a
keyword setWD, which are generated based on theWD,σ and
K . And then sent the CT to adversary A.

(1) The adversary A queries the following oracles for
polynomially-many times.
OTrapdoor (SK ,WQ): On input a set of keyword WQ and the
SK , the challenger C runs the Trapdoor algorithm to get
TWQ and sets Lkw = Lkw

⋃
WQ, if the attributes set adver-

sary’s S satisfies the policy tree T in CT . It then returns

TWQ to adversary A, where TWQ = f (x,
→

Q)|x=H (Encode(σ ||K)),

f (x,
→

Q) =
∏n

j=1(x − H (σ ||j))qj and
→

Q are generated based
on theWQ and σ .

99032 VOLUME 8, 2020

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

TABLE 2. Notation used in performance analysis.

TABLE 3. Computation cost comparison.

TABLE 4. Storage cost comparison.

(2) The adversary chooses two query keywords set WQ0
andWQ1 and sent them to challenger C, the restriction is that
the WQ0 and WQ1 is in Lkw.
(3) Challenger C chooses δ ∈R {0, 1}, and generate the

trapdoor TWδ as in the Trapdoor algorithm. Then set the TWδ
to adversary.

(4) The adversary can query the oracles as in step (1) with
the restriction that the query keywords set other thanWQ0 and
WQ1.
(5) The adversary outputs the guess b′ of b. Because the

CP-ABE scheme [18] is selectively CPA-secure, then the
adversary cannot recovery the σ ||K from CTWD , thus the
adversary cannot effectively compute TW0 and TW1 without
σ ,K .
It means that the adversary only has 1/2+ 1/n! advantage

to guess b′ = b. If the CP-ABE scheme [18] is selectively,
as Theorem 2, the adversary cannot decrypt out the σ ||K
from CTWD , in addition, as description in Section III-D,
the adversary has 1/n! to guess out the σ , then the adversary
has 1/2+1/n! advantage to compute the valid trapdoors TW0

and TW1 .
�

VII. PERFORMANCE ANALYSIS
In this section, we compare the performance of our scheme
with the relatedwork [26], [27]. Table 2 presents the notations
used in this performance analysis.

A. COMPUTATION COMPLEXITY
We compare the schemes [26], [27] with our scheme in terms
of computation complexity in Table 3. The time-consuming
operations mainly consist of P, EG, EGT and M , we ignore
the hash functions H1, H and the XOR (

⊕
) for that these

operations are more efficient than the above operations.
As shown in Table 3, the computation cost in KeyGen

algorithm of our scheme is as efficient as [26], [27]. Com-
pared with [26], [27], the computation cost in the Encryption,
Trapdoor and Retrieve algorithms of our scheme are more
efficient than [26] and [27], respectively. For example, in the
Encryption algorithm, the computation cost of [26] and [27]
are (2|Y |+3+m)EG and (2|Y |+1)EG+ (t+1)EGT , respec-
tively, while the computation cost is (2|Y |+1)EG+mM+EGT

in our scheme. Due to the multiplication operationM is more
efficient than themodular exponentiationsEG andEG, we can

VOLUME 8, 2020 99033

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

FIGURE 5. The Performance Comparison between related works and our scheme.

note that the computation cost in encryption algorithm of our
scheme is more efficient than [26] and [27].

B. STORAGE COMPLEXITY
We compare the schemes [26], [27] with our scheme in terms
of storage complexity in Table 4.

As shown in Table 4, the storage cost in the KeyGen
algorithm of our scheme is the same as [26], [27]. Compared
with [26], [27], the storage cost in Encryption and Trapdoor
algorithms of our scheme are less than [26], [27], respectively.
For example, in the Encryption algorithm, the storage cost of
[26], [27] and our schemes are (2|Y | + 3 + m)|G|, (2|Y | +
1)|G|+ (t+1)|GT |, (2|Y |+1)|G|+m|Z∗p|, respectively. Due
to |Z∗p| = 160-bit, |G| = |GT | = 224-bit, when setting n =
1000 (the t = 18 when n = 1000 in scheme [27]), m = 100,
we note that m|Z∗p| < m|G| and m|Z∗p| < (t + 1)|GT |. Thus
the storage cost in the encryption algorithm of our scheme is
efficient than [26], [27].

C. EXPERIMENTAL PERFORMANCE
In this section, we implement the schemes [26], [27] and our
scheme by using Python language on the Ubuntu 16.04 LTS
with Intel Core i3 Processor 4170 CPU @3.70GHZ with
10.0 GB of RAM. Because these three schemes are highly
dependent on the basic cryptographic operations in the pair-
ing computation, we implement these three schemes in soft-
ware based on the libfenc library [45] and choose a 224-bit
MNT cure (|G| = GT | = 224-bit) from the Stanford Pairing-
Based Crypto library.

For the comparison, we assume that these three schemes
have the same policy tree T : ((A1 or A2) and (A3 or A4) and

. . . and (A|Y |−1 or A|Y |)). We set the number of DU’s attributes
s ∈ [10, 20, 30, 40, 50], the number of leaf nodes in policy
tree |Y | ∈ [20, 40, 60, 80, 100], the number of keyword
in keyword dictionary n = 500, the number of keyword
appeared in a file m = 100, the |Z∗p| = 160 and the number
of query keywords m′ ∈ [3, 5, 7, 9, 11].
As shown in Fig. 5(a), the computation cost in cipher-

text generation of our scheme is efficient than [26], [27].
As described in Table 3, the computation cost ciphertext
generation of the scheme [26], [27] and our scheme are
(2|Y |+3+m)EG, (2|Y |+1)EG+(t+1)EGT and (2|Y |+1)EG+
mM + EGT , respectively. Due to the multiplication M is
efficient than exponentiationEG andEGT . Thus our scheme is
more efficient than [26], [27] in the ciphertext generation. For
example, when |Y | = 40, m = 100, n = 1000, the schemes
[26] and [27] need 945.48 ms and 107.68 ms, respectively,
while our scheme needs 86.87 ms.

As shown in Fig. 5(b), the computation cost in trapdoor
algorithm of our scheme is slightly efficient than [26], [27].
As described in Table 3, the computation cost in the trapdoor
algorithm of our scheme are (2s+3)EG, (2s+1)EG+m′lognM
and (2s+1)EG+m′M , respectively. Due to the multiplication
M is more efficient than exponentiation EG and EGT . Thus
our scheme is efficient than [26], [27]. For example, when
s = 50, m = 100, n = 1000, as for the trapdoor algorithm,
the schemes [26], [27] need 907.67ms and 847.41ms, respec-
tively, while our scheme needs 828.78 ms.

As shown in Fig. 5(c), the computation cost of retrieve
algorithm in our scheme is less than [26], [27]. As described
in Table 3, the time cost of [26], [27] and our schemes
are (2s + 4)P + sEGT , (2s + 1)P + (s + 2m − 1)EGT

99034 VOLUME 8, 2020

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

and (2s + 1)P + mod, respectively. Due to once time cost
of mod operation is efficient than 3 · P or (2m − 1)EGT .
Thus, our scheme is efficient than [26], [27] in the retrieve
algorithm. For example, when s = 50, m′ = 2, n = 1000,
as for the trapdoor algorithm, the schemes [27] and [26] need
164.72 ms and 192.97 ms, respectively, while our scheme
needs 162.82 ms.

As shown in Fig. 5(d) and Fig. 5(e), the storage cost of
encryption algorithm in our scheme is less than [26], [27].
As described in Table 4, the storage cost of [26], [27] and our
schemes are (m+ 2|Y | + 3)|G|, (2|Y | + 1)|G| + (t + 1)|GT |

and (2|Y | + 1)|G| +m|Z∗p|, respectively. Due to |Z∗p| = 160,
|G| = |GT | = 224, when n = 1000, m = 100. As shown
in Fig. 5(d), the storage cost in the encryption algorithm of
our scheme is less than [26], [27] along with increase of
the number |Y |. As shown in Fig. 5(e), when n = 1000,
|Y | = 20, the storage cost in the encryption algorithm of
our scheme is less than [26], [27] along with the increase
of of m. For example, when n = 500, |Y | = 40, and
m = 100, the schemes [26] and [27] need 10.0 kb and 8.64 kb,
respectively, while our scheme needs 7.09 kb.

As shown in Fig. 5(d) and Fig. 5(e), the storage cost in
the trapdoor algorithm of our scheme is slightly less than
[26], [27]. For example, when setting m′ = 5, |Y | = 50,
the schemes [26], [27] need 5.63 kb, 6.89 kb, respectively,
while our scheme needs 5.60 kb.

VIII. CONCLUSION
In this paper, we have designed an ABMKS with only multi-
plication operations in encrypted keyword index generation
which provides secure multi-keyword search service with
fine-grained access control. The computation operations in
the index generation are only multiplication, which is more
efficient than modular exponentiation and pairing. In addi-
tion, the encrypted keyword indexes are aggregated into
one item, being independent on the number of underlying
keyword in a file. The formal security analysis shows that
our scheme is secure. Moreover, the performance evaluation
demonstrates that the ABMKS-WM scheme is better than the
current works in terms of both the computation and commu-
nication overhead.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest
regarding the publication of this article.

REFERENCES
[1] S. Kamara and K. Lauter, ‘‘Cryptographic cloud storage,’’ in Proc.

Int. Conf. Financial Cryptogr. Data Secur. Berlin, Germany: Springer,
Jan. 2010, pp. 136–149.

[2] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, ‘‘Privacy-
preserving public auditing for secure cloud storage,’’ IEEE Trans. Comput.,
vol. 62, no. 2, pp. 362–375, Feb. 2013.

[3] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, and
I. Stoica, ‘‘Above the clouds: A Berkeley view of cloud computing,’’ Dept.
Elect. Eng. Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2009-28, 2009, vol. 28, no. 13.

[4] A. D. Josep, R. Katz, A. Konwinski, L. E. E. Gunho, D. Patterson, and
A. Rabkin, ‘‘A view of cloud computing,’’ Commun. ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[5] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford Univ., 2009.

[6] O. Goldreich and R. Ostrovsky, ‘‘Software protection and simulation on
oblivious RAMs,’’ J. ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[7] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ inProc. IEEE Symp. Secur. Privacy. (S&P), May 2000,
pp. 44–55.

[8] Y. C. Chang and M. Mitzenmacher, ‘‘Privacy preserving keyword searches
on remote encrypted data,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur.
Berlin, Germany: Springer, 2004.

[9] M. Bellare, A. Boldyreva, and A. O’Neill, ‘‘Deterministic and effi-
ciently searchable encryption,’’ in Proc. Annu. Int. Cryptol. Conf. Berlin,
Germany: Springer, Aug. 2007, pp. 535–552.

[10] F. Bao, R. H. Deng, X. Ding, and Y. Yang, ‘‘Private query on encrypted data
in multi-user settings,’’ in Proc. Int. Conf. Inf. Secur. Pract. Exper. Berlin,
Germany: Springer, Apr. 2008, pp. 71–85.

[11] Q. Chai and G. Gong, ‘‘Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2012, pp. 917–922.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable sym-
metric encryption: Improved definitions and efficient constructions,’’
J. Comput. Secur., vol. 19, no. 5, pp. 895–934, Nov. 2011.

[13] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
2012, pp. 965–976.

[14] Z. Xia, X. Wang, X. Sun, and Q. Wang, ‘‘A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Feb. 2016.

[15] D. Boneh, C. G. Di, R. Ostrovsky, and G. Persiano, ‘‘Public key encryption
with keyword search,’’ in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn. Berlin, Germany: Springer, May 2004, pp. 506–522.

[16] Q. Zheng, S. Xu, and G. Ateniese, ‘‘VABKS: Verifiable attribute-
based keyword search over outsourced encrypted data,’’ in Proc. IEEE
INFOCOM-IEEE Conf. Comput. Commun., Apr. 2014, pp. 522–530.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[18] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-
based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[19] J. Li, X. Lin, Y. Zhang, and J. Han, ‘‘KSF-OABE: Outsourced attribute-
based encryption with keyword search function for cloud storage,’’ IEEE
Trans. Services Comput., vol. 10, no. 5, pp. 715–725, Sep. 2017.

[20] J. Li, Y. Zhang, J. Ning, X. Huang, G. S. Poh, and D. Wang,
‘‘Attribute based encryption with privacy protection and accountability
for CloudIoT,’’ IEEE Trans. Cloud Comput., early access, Feb. 19, 2020,
doi: 10.1109/TCC.2020.2975184.

[21] J. Li, Y. Wang, Y. Zhang, and J. Han, ‘‘Full verifiability for outsourced
decryption in attribute based encryption,’’ IEEE Trans. Services Comput.,
early access, May 31, 2017, doi: 10.1109/TSC.2017.2710190.

[22] J. Li, Q. Yu, and Y. Zhang, ‘‘Hierarchical attribute based encryption with
continuous leakage-resilience,’’ Inf. Sci., vol. 484, pp. 113–134,May 2019.

[23] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, ‘‘User collusion avoidance
CP-ABE with efficient attribute revocation for cloud storage,’’ IEEE Syst.
J., vol. 12, no. 2, pp. 1767–1777, Jun. 2018.

[24] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, ‘‘Flexible and fine-grained
attribute-based data storage in cloud computing,’’ IEEE Trans. Services
Comput., vol. 10, no. 5, pp. 785–796, Sep. 2017.

[25] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, ‘‘Attribute-based
keyword search over hierarchical data in cloud computing,’’ IEEE Trans.
Services Comput., early access, Sep. 28, 2017, doi: 10.1109/TSC.2017.
2757467.

[26] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, ‘‘Practical attribute-based
multi-keyword search scheme in mobile crowdsourcing,’’ IEEE Internet
Things J., vol. 5, no. 4, pp. 3008–3018, Aug. 2018.

[27] Z. Li, W. Li, F. Gao, W. Yin, H. Zhang, Q. Wen, and K. Liang, ‘‘Towards
privacy-preserving and efficient attribute-based multi-keyword search,’’
Cryptol. ePrint Arch., Tech. Rep. 2019/1314, Nov. 2019. [Online]. Avail-
able: https://eprint.iacr.org/2019/1314

[28] E.-J. Goh, ‘‘Secure indexes,’’ IACR Cryptol. ePrint Arch., Tech. Rep.
2003/216, Mar. 2004. [Online]. Available: https://eprint.iacr.org/2003/216

VOLUME 8, 2020 99035

http://dx.doi.org/10.1109/TCC.2020.2975184
http://dx.doi.org/10.1109/TSC.2017.2710190
http://dx.doi.org/10.1109/TSC.2017.2757467
http://dx.doi.org/10.1109/TSC.2017.2757467

Y. Cui et al.: Efficient ABMKS Scheme in Encrypted Keyword Generation

[29] P. Golle, J. Staddon, and B. Waters, ‘‘Secure conjunctive keyword search
over encrypted data,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur.
Berlin, Germany: Springer, Jun. 2004, pp. 31–45.

[30] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, and
H. Shi, ‘‘Searchable encryption revisited: Consistency properties, relation
to anonymous IBE, and extensions,’’ in Proc. Annu. Int. Cryptol. Conf.
Berlin, Germany: Springer, Aug. 2005, pp. 205–222.

[31] Y. H. Hwang and P. J. Lee, ‘‘Public key encryption with conjunctive key-
word search and its extension to a multi-user system,’’ in Proc. Int. Conf.
Pairing-Based Cryptogr. Berlin, Germany: Springer, Jul. 2007, pp. 2–22.

[32] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Fuzzy keyword
search over encrypted data in cloud computing,’’ in Proc. IEEE INFO-
COM, Mar. 2010, pp. 1–5.

[33] J. Baek, R. Safavi-Naini, and W. Susilo, ‘‘Public key encryption with
keyword search revisited,’’ in Proc. Int. Conf. Comput. Sci. Appl. Berlin,
Germany: Springer, Jun. 2008, pp. 1249–1259.

[34] B. Cui, Z. Liu, and L. Wang, ‘‘Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,’’ IEEE Trans. Comput.,
vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[35] Z. Liu, T. Li, P. Li, C. Jia, and J. Li, ‘‘Verifiable searchable encryption
with aggregate keys for data sharing system,’’ Future Gener. Comput. Syst.,
vol. 78, pp. 778–788, Jan. 2018.

[36] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, ‘‘Dual-server public-key
encryption with keyword search for secure cloud storage,’’ IEEE Trans.
Inf. Forensics Security, vol. 11, no. 4, pp. 789–798, Apr. 2016.

[37] J. Ning, J. Xu, K. Liang, F. Zhang, and E.-C. Chang, ‘‘Passive attacks
against searchable encryption,’’ IEEE Trans. Inf. Forensics Security,
vol. 14, no. 3, pp. 789–802, Mar. 2019.

[38] J. Li, Y. Shi, and Y. Zhang, ‘‘Searchable ciphertext-policy attribute-based
encryptionwith revocation in cloud storage,’’ Int. J. Commun. Syst., vol. 30,
no. 1, p. e2942, Jan. 2017.

[39] H. Yin, Z. Qin, J. Zhang, H. Deng, F. Li, and K. Li, ‘‘A fine-grained
authorized keyword secure search scheme with efficient search permis-
sion update in cloud computing,’’ J. Parallel Distrib. Comput., vol. 135,
pp. 56–69, Jan. 2020.

[40] K. Liang and W. Susilo, ‘‘Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,’’ IEEE Trans. Inf. Forensics
Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[41] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao, and K. Li, ‘‘CP-ABSE:
A ciphertext-policy attribute-based searchable encryption scheme,’’ IEEE
Access, vol. 7, pp. 5682–5694, 2019.

[42] H. Yin, Z. Qin, J. Zhang, L. Ou, F. Li, and K. Li, ‘‘Secure conjunctive
multi-keyword ranked search over encrypted cloud data for multiple data
owners,’’ Future Gener. Comput. Syst., vol. 100, pp. 689–700, Nov. 2019.

[43] Q. Huang and H. Li, ‘‘An efficient public-key searchable encryp-
tion scheme secure against inside keyword guessing attacks,’’ Inf. Sci.,
vols. 403–404, pp. 1–14, Sep. 2017.

[44] D. J. Park, K. Kim, and P. J. Lee, ‘‘Public key encryption with conjunctive
field keyword search,’’ in Proc. Int. Workshop Inf. Secur. Appl. Berlin,
Germany: Springer, Aug. 2004, pp. 73–86.

[45] M. Green, A. Akinyele, andM. Rushanan. (2004). Libfenc: The Functional
Encryption Library. [Online]. Available: http://code.google.com/p/libfenc

YUANBO CUI received the B.S. degree in infor-
mation and computing science from Weinan
Teachers’ University, in 2009, and the M.S. degree
in applied math from the North China University
of Technology, in 2013. He is currently pursuing
the Ph.D. degree with the State Key Laboratory
of Networking and Switching Technology, Net-
work Security Research Center, Beijing University
of Posts and Telecommunications (BUPT). His
research interests include cryptography, location-

based services, and security and privacy.

FEI GAO received the B.S. and Ph.D. degrees
in cryptology from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 2002 and 2007, respectively. He is currently a
Professor and the Ph.D. Supervisor with the Bei-
jing University of Posts and Telecommunications.
His research interests include quantum cryptog-
raphy protocol and its security analysis, quantum
private query, and quantum key distribution.

YIJIE SHI received the Ph.D. degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2016. She is currently a Lecturer
with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications. Her research interests
include industrial control system security and data
privacy protection.

WEI YIN received the B.S. degree in mathematics
and applied mathematics from Huaibei Normal
University, Huaibei, Anhui, China, in 2012, and
the Ph.D. degree in cryptography from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2019. He is currently with the
National Computer Network EmergencyResponse
Technical Team/Coordination Center of China,
Beijing. His research interests include public key
cryptography, lattice cryptography, and provable
security.

EMMANOUIL PANAOUSIS (Member, IEEE)
received the B.Sc. degree in informatics and
telecommunications from the University of
Athens, Greece, in 2006, and the M.Sc. degree in
computer science from the Athens University of
Economics and Business, Greece, in 2008, and the
Ph.D. degree in mobile communications security
from Kingston University London, U.K., in 2012.
He was a Senior Lecturer of cyber security and
privacy with the University of Brighton, an Invited

Researcher with Imperial College London, a Postdoctoral Researcher with
the Queen Mary University of London, and a Research and Development
Consultant with Ubitech Technologies Ltd., and Surrey Research Park. He
is currently an Associate Professor with the University of Surrey. His main
research interests include cybersecurity and privacy engineering.

KAITAI LIANG (Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science, City University of Hong Kong, in 2014.
He is currently an Assistant Professor with the
Department of Computer Science, University of
Surrey, U.K. His research interests include applied
cryptography and information security, in particu-
lar, encryption, network security, big data security,
privacy enhancing technology, blockchain, lattice-
based crypto, and security in cloud computing.

99036 VOLUME 8, 2020

